Плотность электрона как частицы. Что такое масса электрона? Электрон и Вселенная


Введение………………………………………………………………………

Основная часть………………………………………………………………

Определение электрона, его открытие …………..…...……………

Свойства электрона …………………………………………………

Строение электронных оболочек ……..…………………………..

Выводы ……………………………………………………………….

Заключение……………………………………………………………………

Список литературы…………………………………………………………..

Приложения

Приложение 1……………………………………………………………….

Вступление

Первое представление, что такое атом, электрон, электронные оболочки нам дали ещё в 8-ом классе. Это были азы, самое простое объяснение сложнейшего, как потом оказалось, материала. Для меня в 8 классе самых простых объяснений было достаточно. Но не так давно, месяца 2-3 назад, я начал задумываться, а как же на самом деле устроен атом, как движется электрон, что такое «электронная орбиталь» в полном её понимании. Сначала я пытался сам подумать над этим, но ничего «дельного», по моим представлениям, у меня не выходило. Тогда я начал изучать дополнительную литературу, чтобы получить полное представление о микромире и ответить на вопросы, которые меня интересуют. С каждой новой строкой из прочитанного для меня открывалось что-то новое. Далее я попытался изложить то, что смог изучить и частично (ибо знания такого высокого уровня даются в университетах и изучаются множеством учёных всего мира, и школьнику такой материал в полном смысле осознать очень сложно) понять за это время.

Основная часть

1. Определение электрона, его открытие.

Электрон – стабильная, отрицательно заряженная элементарная частица , одна из основных структурных единиц вещества.

Является фермионом (то есть имеет полуцелый спин ). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов , где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме .

Датой открытияэлектрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им туманной камеры.

2. Свойства электрона.

А. Масса и заряд частицы.

Заряд электрона неделим и равен −1,(35)·10−19 Кл. Он был впервые непосредственно измерен в экспериментах А. Ф. Иоффе (1911) и Р. Милликена (1912). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса электрона равна 9,(40)·10−31 кг.

Б. Невозможность описания электрона через классические законы механики и электродинамики.

Долгое время знаний о действительном строении атома не было. В конце XIX – начале XX в. в. было доказано, что атом является сложной частицей, состоящей из более простых (элементарных) частиц. В 1911 г. на основании экспериментальных данных английский физик Э. Резерфорд предложил ядерную модель атома с почти полной концентрацией массы в относительно малом объеме. Ядро атома, состоящее из протонов и нейтронов, имеет положительный заряд. Оно окружено электронами, несущими отрицательный заряд.

Описать движение электронов в атоме с позиций классической механики и электродинамики невозможно, так как:

· если утверждать, что электрон (как цельное тело) движется по замкнутой круговой орбите вокруг ядра со Ѵ~ м/c (т. е. рассматривать с позиции классической механики), то под действием центростремительной силы он в кратчайшее время (~ сек) должен будет упасть на ядро атома, что приведёт к не существованию атома как такового и не существованию молекул, т. к. электроны осуществляют взаимодействие между атомами;

· если рассматривать электрон как заряженное тело (т. е. рассматривать с позиции электродинамики), то он неизбежно должен притянуться положительно заряженным ядром, а также при движении он будет излучать электромагнитное поле и терять при этом энергию, что неизбежно приведёт к аналогичной ситуации, что и в случае рассмотрения с позиции классической механики.

Вот что писал Нильс Бор:

«Недостаточность классической электродинамики для объяснения свойств атома на основе модели резерфордовского типа ясно проявляется при рассмотрении простейшей системы, состоящей из положительно заряженного ядра очень малого размера и электрона, движущегося по замкнутой орбите вокруг ядра. Ради простоты примем, что масса электрона пренебрежимо мала по сравнению с массой ядра, а скорость электронов мала по сравнению со скоростью света.

Сначала допустим, что излучение энергии отсутствует. В этом случае электрон будет двигаться по стационарным эллиптическим орбитам… Теперь рассмотрим влияние излучения энергии, как оно обычно измеряется по ускорению электрона. В этом случае электрон уже не будет двигаться по стационарным орбитам. Энергия W будет непрерывно убывать, и электрон будет приближаться к ядру, описывая всё меньшие орбиты со всё возрастающей частотой; в то время как электрон в среднем выигрывает в кинетической энергии, система в целом теряет энергию. Этот процесс будет продолжаться до тех пор, пока размеры орбит станут того же порядка, что и размеры электронов или ядра. Простой расчёт показывает, что испускаемая во время указанного процесса энергия неизмеримо больше той, которая испускается при обычных молекулярных процессах. Очевидно, что поведение такой системы совершенно отлично от того, что действительно происходит с атомной системой в природе. Во-первых, реальные атомы длительное время имеют определённые размеры и частоты. Далее представляется, что если рассмотреть какой-либо молекулярный процесс, то после излучения определённого количества энергии, характерного для излучаемой системы, эта система всегда вновь окажется в состоянии устойчивого равновесия, в котором расстояния между частицами будут того же порядка величины, что и до процесса».


В. Постулаты Бора.

Основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов, а также квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

· Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

· Электрон в атоме , не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется . Пребывание электрона на орбите определяет энергию этих стационарных состояний.

· При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии h ν = En − Em , где En ; Em энергетические уровни , между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

a) «Динамическое равновесие системы в стационарных состояниях можно рассматривать с помощью обычной механики, тогда как переход системы из одного стационарного состояния в другое нельзя трактовать на этой основе.

b) Указанный переход сопровождается испусканием монохроматического излучения, для которого соотношение между частотой и количеством выделенной энергии именно такое, которое дает теория Планка…»

позволили Бору составить свою теорию строения атома или Боровскую модель атома.

Она представляет собой полуклассическую модель атома, за основу которой взята теория Резерфорда о строении атома. Используя выше изложенные допущения и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, Бор получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

https://pandia.ru/text/78/008/images/image006_77.gif" alt="m_e" width="24" height="12"> - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера , решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,(36)·10−11 м, ныне называется боровским радиусом , либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собой энергию ионизации атома водорода.

Примечание: данная модель – это грубое применение законов электродинамики с некоторыми допущениями для объяснения движения электрона исключительно в атоме водорода. Для более сложных систем с большим количеством электронов данная теория неприемлема. Она является следствием более общих квантовых законов.

Г. Корпускулярно-волновой дуализм.

В классической механике рассматривается два вида движения: движение тела с локализацией перемещающегося объекта в каждой точке траектории в определенный момент времени и движение волны , делокализованной в пространстве среды. Для микрообъектов такое разграничение движения невозможно. Эту особенность движения называют корпускулярно-волновым дуализмом.

Корпускулярно-волновой дуализм – способность микрочастицы, обладающей массой, размерами и зарядом, одновременно проявлять и свойства, характерные для волн, например, способность к дифракции. В зависимости от того, какие свойства частиц изучаются, они проявляют либо одни, либо другие свойства.

Автором идеи корпускулярно-волнового дуализма стал А. Эйнштейн , который предложил рассматривать кванты электромагнитного излучения – фотоны – как движущиеся со скоростью света частицы, имеющие нулевую массу покоя. Их энергия равна E = mc 2 = h ν = hc / λ ,

где m - масса фотона, с - скорость света в вакууме, h - постоянная Планка, ν - частота излучения, λ - длина волны.

В 1924 году французский физик Луи де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом . Все частицы, имеющие конечный импульс , обладают волновыми свойствами, в частности, подвержены интерференции и дифракции .

Формула де Бройля устанавливает зависимость длины волны , связанной с движущейся частицей вещества, от импульса частицы:

где - масса частицы, - ее скорость, - постоянная Планка . Волны, о которых идет речь, называются волнами де Бройля. Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приемниках частиц.

Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистической закономерности, согласно которой частицы попадают в определенные места в приёмниках – туда, где интенсивность волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.


Данная теория положила начало становления квантовой механики. В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении.

Д. Принцип неопределённости Гейзенберга.

В 1927 г. немецкий физик-теоретик В. Гейзенберг сформулировал принцип неопределенности, заключающийся в принципиальной невозможности одновременно точно определить положение микрочастицы в пространстве и ее импульс:

Δpx · Δ x h / 2π,

где Δpx = m Δvx x - неопределенность (ошибка в определении) импульса микрообъекта по координате х ; Δx - неопределенность (ошибка в определении) положения микрообъекта по этой координате.

Таким образом, чем точнее определена скорость, тем меньше известно о местоположении частицы, и наоборот.

Поэтому для микрочастицы (в данном случае электрона) становится неприемлемым понятие о траектории движения, поскольку оно связано с конкретными координатами и импульсом частицы. Можно лишь говорить о вероятности обнаружить ее какой-то областях пространства.

Произошел переход от "орбит движения" электронов, введенных Бором, к понятию орбитали – области пространства, где вероятность пребывания электронов максимальна.

3. Строение электронных оболочек.

Электронная оболочка атома область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Электронная оболочка атома это совокупность атомных орбиталей с одинаковым значением главного квантового числа n.

a ) Понятие об атомной орбитали.

Атомная орбиталь это одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n , орбитальным l и магнитным m квантовыми числами.

1) Волновая функция - комплексная функция, описывающая состояние квантовомеханической системы. (Атом водорода принимается как простейшая квантовая система. Именно на его основе делаются все вычисления, связанные с волновой функцией.)

Самым важным является физический смысл волновой функции. Он состоит в следующем:

« плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.»

Волновая функция системы А частиц содержит координаты всех частиц: ψ(1,2,...,A, t).

Квадрат модуля волновой функции отдельной частицы |ψ(,t)|2 = ψ*(,t)ψ(,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, |ψ(,t)|2dv ≡ |ψ(x, y, z, t)|2dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1,2,...,A в элементе объема многомерного пространства дается величиной |ψ(1,2,...,A, t)|2dv1dv2...dvA.

Принцип неопределённости Гейзенберга накладывает некоторые рамки точности расчёта волновой функции.

Значение волновой функции находится путём решения так называемого уравнения Шрёдингера.

2) Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого (квантового) состояния , задаваемого волновой функцией.

Оно было предложено в 1926 г. немецким физиком Э. Шрёдингером для описания состояния электрона в атоме водорода.

3) Физический смысл волновой функции даёт понять геометрический смысл атомной орбитали, заключающийся в следующем:

«Атомная орбиталь является областью пространства, ограниченная поверхностью равной плотности вероятности или заряда . Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0, 9 - 0,99»

4) Квантовые числа это числа, которые задают форму орбитали, энергию и момент импульса электрона.

· Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :

Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.

· Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задаётся соотношением


Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp ) - резкая серия в атомных спектрах, p (principal )- главная, d (diffuse ) - диффузная, f (fundamental ) - фундаментальная.

· Магнитное квантовое число ml

Движение электрона по замкнутой орбите вызывает появление магнитного поля. Состояние электрона, обусловленное орбитальным магнитным моментом электрона (в результате его движения по орбите), характеризуется третьим квантовым числом – магнитным ml. Это квантовое число характеризует ориентацию орбитали в пространстве, выражая проекцию орбитального момента импульса на направление магнитного поля.

Соответственно ориентации орбитали относительно направления вектора напряжённости внешнего магнитного поля, магнитное квантовое число может принимать значения любых целых чисел, как положительных, так и отрицательных, от – l до +l, включая 0, т. е. всего (2l + 1) значений. Например, при l = 0, ml = - 1, 0, +1.

Таким образом, ml характеризует величину проекции вектора орбитального момента количества движения на выделенное направление. Например, p-орбиталь в магнитном поле может ориентироваться в пространстве в 3-х различных положениях. [ 9. 55]

5) Оболочки.

Электронные оболочки обозначаются буквами K, L, M, N, O, P, Q или цифрами от 1 до 7. Подуровни оболочек обозначаются буквами s, p, d, f, g, h, i или цифрами от 0 до 6. Электроны внешних оболочек обладают большей энергией, и, по сравнению с электронами внутренних оболочек, находятся дальше от ядра, что делает их более важными в анализе поведения атома в химических реакциях и в роли проводника, так как их связь с ядром слабее и легче разрывается.

6) Подуровни.

Каждая оболочка состоит из одного или нескольких подуровней, каждый из которых состоит из атомных орбиталей. К примеру, первая оболочка (K) состоит из одного подуровня «1s». Вторая оболочка (L) состоит из двух подуровней, 2s и 2p. Третья оболочка - из «3s», «3p» и «3d».

Для полного объяснения строения электронных оболочек необходимо выделить следующие 3 очень важных положения:

1) Принцип Паули.

Он был сформулирован швейцарским физиком В. Паули в 1925. Он заключается в следующем:

В атоме не может быть 2-х электронов, обладающих одинаковыми свойствами.

На самом деле, данный принцип более фундаментален. Он применим ко всем фермионам.

2) Принцип наименьшей энергии.

В атоме каждый электрон располагается так, чтобы его энергия была минимальна (что отвечает наибольшей связи его с ядром).

Т. к. энергия электрона в основном состоянии определяется главным квантовым числом n и побочным квантовым числом l, то сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и l является наименьшей.

Исходя из этого впервые в 1961 году сформулировал общее положение, гласящее, что:

Электрон занимает в основном состоянии уровень не с минимальным значением n , а с наименьшем значением суммы n + l .

3) Правило Гунда.

При данном значении l (т. е. в пределах определённого подуровня) электроны располагаются таким образом, чтобы суммарный спин был максимальным.

Если, например, в трёх p-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т. е. размещаться на трёх разных p-орбиталях :

Выводы :

1) Движение и свойства электрона нельзя описать классическими законами механики и электродинамики. Электрон можно описать только в рамках квантовой физики.

2) Электрон не имеет чёткой орбиты вращения. Вокруг ядра существует электронное «облако», где электрон находится в любой точке пространства в любой момент времени.

3) Электрон обладает свойствами частицы и волны.

4) Существуют разные физико-математические методы описания характеристик электрона.

5) Атомные орбитали, каждая из которых состоит не более, чем из 2-х электронов, составляют электронную оболочку атома, электроны которой участвуют в образовании межатомных связей в молекулах.

Заключение.

В школе на начальном этапе не полностью раскрывают реальное представление о строении атома, электрона. Чтобы лучше узнать его строение, необходимо изучать дополнительную литературу. И у кого эта тема вызывает интерес, у того есть все возможности, чтобы углубить свои знания, и даже внести свой вклад в познание микрочастиц.

Первоначальных знаний о законах физики недостаточно для того, чтобы в полной мере описать объекты микромира, в данном случае – электроны.

Без понимания основ мироздания, фундаментальных понятий микромира, невозможно понять окружающий нас макро – и мегамир.

Список литературы

1. Википедия. Статья «Атомная орбиталь».

2. Википедия. «Волновая функция».

3. Википедия. Статья «Открытие электрона».

4. Википедия. Статья «Постулаты Бора».

5. Википедия. «Уравнение Шрёдингера».

6. Википедия. Статья «Электрон».

7. , . Хрестоматия по физике: учебное пособие для учащихся» стр.168: Из статьи Н. Бора «О строении атома и молекул». Часть первая. «Связывание электронов положительным ядром».

8. Кафедра МИТХТ. Основы строения вещества.

9. , . Начала химии.

Приложение 1

1. Сэр Джозеф Джон Томсон (18 декабря 1856 - 30 августа 1940) - английский физик, открывший электрон, лауреат Нобелевской премии по физике 1906 года. Большинство работ его посвящено явлениям электрическим, в последнее же время особенно прохождению электричества через газы исследованию лучей Рентгена и Беккереля.

2. Чарлз Томсон Риз Вильсон (14 февраля 1869, Гленкорс - 15 ноября 1959, Карлопс, пригород Эдинбурга) - шотландский физик, за разработку названной в его честь камеры Вильсона, которая дала «метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара», Вильсон был удостоен в 1927 г. (совместно с Артуром Комптоном) Нобелевской премии по физике.

3. Эрне́ст Ре́зерфорд (30 августа 1871, Спринг Грув - 19 октября 1937, Кембридж) - британский физик новозеландского происхождения. Известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года.

4. Нильс Хе́нрик Дави́д Бор (7 октября 1885, Копенгаген - 18 ноября 1962, Копенгаген) - датский физик-теоретик и общественный деятель, один из создателей современной физики. Лауреат Нобелевской премии по физике (1922). Был членом более чем 20 академий наук мира, в том числе иностранным почётным членом АН СССР (1929; членом-корреспондентом - с 1924).

Бор известен как создатель первой квантовой теории атома и активный участник разработки основ квантовой механики. Также он внёс значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой.

5. Альбе́рт Эйнште́йн 14 марта 1879, Ульм, Вюртемберг, Германия - 18 апреля 1955, Принстон, Нью-Джерси, США) - физик–теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии (1879-1893, 1914-1933), Швейцарии (1893-1914) и США (1933-1955). Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР (1926). Автор множества книг и статей. Автор важнейших физических теорий: Общая теория относительности, Квантовая теория фотоэффекта и т. д.

6. Раймон, 7-й герцог Брольи , более известный как Луи де Бройль (15 августа 1892, Дьеп - 19 марта 1987, Лувесьен) - французский физик-теоретик, один из основоположников квантовой механики, лауреат Нобелевской премии по физике за 1929 год, член Французской академии наук (с 1933 года) и её непременный секретарь (с 1942 года), член Французской академии (с 1944 года).

Луи де Бройль является автором работ по фундаментальным проблемам квантовой теории. Ему принадлежит гипотеза о волновых свойствах материальных частиц (волны де Бройля или волны материи), положившая начало развитию волновой механики. Он предложил оригинальную интерпретацию квантовой механики, развивал релятивистскую теорию частиц с произвольным спином, в частности фотонов (нейтринная теория света), занимался вопросами радиофизики, классической и квантовой теориями поля, термодинамики и других разделов физики.

7. Ве́рнер Карл Ге́йзенберг (нем. 5 декабря 1901, Вюрцбург - 1 февраля 1976, Мюнхен) - немецкий физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1932). Член ряда академий и научных обществ мира.

8. Эрвин Ру́дольф Йо́зеф Алекса́ндр Шрё́дингер (12 августа 1887, Вена - 4 января 1961, там же) - австрийский физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1933). Член ряда академий наук мира, в том числе иностранный член Академии наук СССР (1934).

Шрёдингеру принадлежит ряд фундаментальных результатов в области квантовой теории, которые легли в основу волновой механики: он сформулировал волновые уравнения (стационарное и зависящее от времени уравнения Шрёдингера), разработал волновомеханическую теорию возмущений, получил решения ряда конкретных задач. Шрёдингер предложил оригинальную трактовку физического смысла волновой функции. Он является автором множества работ в различных областях физики: статистической механике и термодинамике, физике диэлектриков, теории цвета, электродинамике, общей теории относительности и космологии; он предпринял несколько попыток построения единой теории поля.

Фермио́н - по современным научным представлениям: элементарные частицы, из которых складывается вещество. К фермионам относят кварки, электрон, мюон, тау-лептон, нейтрино. В физике - частица (или квазичастица) с полуцелым значением спина. Своё название получили в честь физика Энрико Ферми.

Лептоны - фермионами, то есть их спин равен 1/2. Лептоны вместе с кварками составляют класс фундаментальных фермионов - частиц, из которых состоит вещество и у которых, насколько это известно, отсутствует внутренняя структура.

Линейчатый спектр водорода (или Спектральные серии водорода) – набор спектральных линий, которые получаются при переходе электронов с любого из вышележащих стационарных уровней на один нижележащий, являющийся основным для данной серии.

Момент импульса − величина, зависящая от того, сколько массы данного тела вращается, как она распределена относительно оси вращения, и с какой скоростью происходит вращение.

Стационарным состоянием называется состояние квантовой системы, при котором её энергия и другие динамические величины, характеризующие квантовое состояние, не изменяются.

Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система.

В волновой механике описывается волновой функцией.

Электрон. Образование и строение электрона. Магнитный монополь электрона.

(продолжение)


Часть 4. Строение электрона.

4.1. Электрон является двухкомпонентной частицей, которая состоит только из двух сверхуплотнённых (сгущенных, сконцентрированных) полей - электрического поля-минус и магнитного поля-N. При этом:

а) плотность электрона - максимально возможная в Природе;

б) размеры электрона (D = 10 -17 см и менее) - минимальные в Природе;

в) в соответствии с требованием минимизации энергии, все частицы - электроны, позитроны, частицы с дробным зарядом, протоны, нейтроны и пр. обязаны иметь (и имеют) сферическую форму;

г) по неизвестным пока причинам, независимо от величины энергии «родительского» фотона, абсолютно все электроны (и позитроны) рождаются абсолютно идентичными по своим параметрам (например - масса абсолютно всех электронов и позитронов составляет 0,511МэВ).

4.2. «Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды».(с) Это автоматически позволяет сделать однозначный вывод об эквивалентности массы и заряда электрона, то есть: масса электрона является эквивалентом заряда, и наоборот - заряд электрона является эквивалентом массы (для позитрона - аналогично).

4.3. Указанное свойство эквивалентности распространяется также и на частицы с дробными зарядами (+2/3) и (-1/3), которые являются основой кварков. То есть: масса позитрона, электрона и всех дробных частиц является эквивалентом их заряда, и наоборот - заряды этих частиц являются эквивалентом массы. Поэтому удельный заряд электрона, позитрона и всех дробных частиц одинаковый (const) и равен1,76*10 11 Кл/кг.

4.4. Поскольку элементарный квант энергии автоматически является элементарным квантом массы, то масса электрона (с учётом наличия дробных частиц 1/3 и 2/3) должна иметь значения, кратные массам трех отрицательных полуквантов. (См. также «Фотон. Строение фотона. Принцип перемещения. пункт 3.4.)

4.5. Определить внутреннее строение электрона весьма затруднительно по многим причинам, тем не менее, представляет значительный интерес хотя бы в первом приближении рассмотреть влияние двух компонент (электрической и магнитной) на внутреннее строение электрона. См. рис. 7.

Рис.7. Внутреннее строение электрона, варианты:

Вариант №1. Каждая пара лепестков отрицательного полукванта образует «микроэлектроны», которые затем формируют электрон. При этом количество «микроэлектронов» должно быть кратным трём.

Вариант №2. Электрон является двухкомпонентной частицей, которая состоит из двух состыкованных самостоятельных полусферических монополей - электрического(-) и магнитного(N).

Вариант №3. Электрон является двухкомпонентной частицей, которая состоит из двух монополей - электрического и магнитного. При этом магнитный монополь сферической формы расположен в центре электрона.

Вариант №4. Другие варианты.

По-видимому, может быть рассмотрен вариант когда электрические (-) и магнитные поля (N) могут существовать внутри электрона не только в виде компактных монополей, но и в виде однородной субстанции, то есть образуют практически бесструктурную? кристаллическую? гомогенную? частицу. Однако это весьма сомнительно.

4.6. Каждый из предложенных на рассмотрение вариантов имеет свои достоинства и недостатки, например:

а) Варианты №1. Электроны такой конструкции дают возможность спокойно образовывать дробные частицы с массой и зарядом кратным 1/3, но в то же время делают затруднительным объяснение собственного магнитного поля электрона.

б) Вариант №2. Этот электрон при движении вокруг ядра атома постоянно ориентирован на ядро своим электрическим монополем и поэтому может иметь только два варианта вращения вокруг своей оси - по часовой стрелке или против (запрет Паули?) и т.д.

4.7. При рассмотрении указанных (или вновь предложенных) вариантов в обязательном порядке необходимо учитывать реально существующие свойства и характеристики электрона, а также учитывать ряд обязательных требований, например:

Наличие электрического поля (заряда);

Наличие магнитного поля;

Эквивалентность некоторых параметров, например: масса электрона эквивалентна его заряду и наоборот;

Возможность образовывать дробные частицы массой и зарядом кратным 1/3;

Наличие набора квантовых чисел, спина и др.

4.8. Электрон появился как двухкомпонентная частица, у которой одна половина (1/2) является уплотнённым электрическим полем-минус (электрическим монополем-минус), а вторая половина (1/2) является уплотнённым магнитным полем (магнитным монополем-N). Однако при этом следует иметь в виду, что:

Электрические и магнитные поля при определённых условиях могут порождать друг друга (превращаться друг в друга);

Электрон не может быть однокомпонентной частицей и состоять на 100% из поля-минус, поскольку однозарядное поле-минус будет распадаться из-за сил отталкивания. Именно поэтому внутри электрона необходимо наличие магнитной компоненты.

4.9. К сожалению, провести полный анализ всех достоинств и недостатков предложенных вариантов и выбрать единственно правильный вариант внутреннего строения электрона в данной работе не представляется возможным.

Часть 5. «Волновые свойства электрона».

5.1. «К концу 1924г. точка зрения, согласно которой электромагнитное излучение ведет себя отчасти подобно волнам, а отчасти подобно частицам, стала общепринятой...И именно в это время француза Луи де Бройля, который в то время был аспирантом, осенила гениальная мысль: почему то же самое не может быть для вещества? Луи де Бройль проделал по отношению к частицам работу, обратную той, которую Эйнштейн провел для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц с распространением волн, которые он назвал волнами материи. Гипотеза де Бройля основывалась на сходстве уравнений, описывающих поведение лучей света и частиц вещества, и носила исключительно теоретический характер. Для ее подтверждения или опровержения требовались экспериментальные факты».(с)

5.2. «В 1927 году американские физики К.Дэвиссон и К.Джермер обнаружили, что при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникают максимумы. Аналогичные данные (возникновение максимумов) уже имелись по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому появление этих максимумов у отражённых пучков электронов не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции.Таким образом, волновые свойства частиц — электронов (и гипотеза де Бройля) были доказаны экспериментом».(с)

5.3. Однако рассмотрение изложенного в данной работе процесса появления корпускулярных свойств у фотона (см. рис.5.) позволяет сделать вполне однозначные выводы:

а) по мере уменьшения длины волны с 10 -4 до 10 -10 {C}{C}{C}{C}{C}см электрические и магнитные поля фотона уплотняются

{C}{C}{C}{C}{C}{C}{C}{C}{C}{C}б) при уплотнении электрического и магнитного полей у «линии раздела» начинается стремительное увеличение «плотности» полей и уже в рентгеновском диапазоне плотность полей соизмерима с плотностью «обычной» частицы.

в) поэтому рентгеновский фотон при взаимодействии с препятствием уже не отражается от препятствия как волна, а начинает отскакивать от него как частица.

5.4. То есть:

а) уже в диапазоне мягкого рентгена электромагнитные поля фотонов настолько уплотнились, что обнаружить у них волновые свойства весьма затруднительно. Цитата: «Чем меньше длина волны фотона, тем труднее обнаружить у него свойства волны и тем сильнее у него проявляются свойства частицы».

б) в жестком рентгеновском и гамма-диапазоне фотоны ведут себя как стопроцентные частицы, и обнаружить у них волновые свойства уже практически невозможно. То есть: рентгеновский и гамма-фотон полностью теряет свойства волны и превращается в стопроцентную частицу. Цитата: «Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц» (с).

в) поэтому в опытах по рассеиванию рентгеновского фотона от поверхности кристалла наблюдалась уже не волна, а обыкновенная частица, которая отскакивала от поверхности кристалла и повторяла строение кристаллической решётки.

5.5. До опытов К.Дэвиссона и К.Джермера уже имелись экспериментальные данные по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому получив схожие результаты в опытах при рассеивании электронов на кристалле никеля, они автоматически приписали электрону волновые свойства. Однако электрон это «твердая» частица, которая имеет реальную массу покоя, габариты и пр. Не электрон-частица ведет себя как фотон-волна, а рентгеновский фотон имеет (и проявляет) все свойства частицы. Не электрон отражается от препятствия как фотон, а рентгеновский фотон отражается от препятствия как частица.

5.6. Поэтому: никаких «волновых свойств» у электрона (и других частиц) не было, нет и быть не может. И не существует никаких предпосылок и тем более возможностей для изменения данной ситуации.

Часть 6. Выводы.

6.1.Электрон и позитрон являются первыми и основообразующими частицами, наличие которых определило появление кварков, протонов, водорода и всех остальных элементов таблицы Менделеева.

6.2. Исторически, одну частицу назвали электроном и присвоили ей знак минус (материя), а другую назвали позитроном и присвоили ей знак плюс (антиматерия). «Электрический заряд электрона условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря» (с).

6.3. Электрон может появиться (появиться = родится) только в паре с позитроном (электрон позитронная пара). Появление в Природе хотя бы одного «непарного» (одиночного) электрона или позитрона является нарушением закона сохранения заряда, общей электронейтральности материи и технически невозможно.

6.4. Образование электрон-позитронной пары в кулоновском поле заряженной частицы происходит после разделения элементарных квантов фотона в продольном направлении на две составляющие части: отрицательную - из которой формируется частица-минус (электрон) и положительную - из которой формируется частица-плюс (позитрон). Разделение электронейтрального фотона в продольном направлении на две абсолютно равные по массе, но разные по зарядам (и магнитным полям) части - это естественное свойство фотона, вытекающее из законов сохранения заряда и др. Наличие «внутри» электрона даже ничтожных количеств «частичек-плюс», а «внутри» позитрона - «частичек-минус» - исключается. Также исключается наличие внутри электрона и протона электронейтральных «частичек» (обрезков, кусочков, обрывков и т.д.) материнского фотона.

6.5. По неизвестным причинам абсолютно все электроны и позитроны рождаются эталонными «максимально-минимальными» частицами (т.е. они не могут быть больше и не может быть меньше по массе, заряду, габаритам и другим характеристикам). Образование из электромагнитных фотонов каких-либо более мелких или более крупных частиц-плюс (позитронов) и частиц-минус (электронов) - исключается.

6.6. Внутреннее строение электрона однозначно предопределено последовательностью его появления: электрон формируется как двухкомпонентная частица, которая на 50% является уплотнённым электрическим полем-минус (электрическим монополем-минус), и на 50% - уплотнённым магнитным полем (магнитным монополем- N). Эти два монополя могут рассматриваться как разнозарядные частицы, между которыми возникают силы взаимного притяжения (сцепления).

6.7. Магнитные монополи существуют, но не в свободном виде, а только как составные части электрона и позитрона. При этом магнитный монополь-(N) является неотъемлемой частью электрона, а магнитный монополь-(S) является неотъемлемой частью позитрона. Наличие магнитной составляющей «внутри» электрона обязательно, поскольку только магнитный монополь-(N) может образовать с однозарядным электрическим монополем-минус прочнейшую (и невиданную по силе) связь.

6.8. Электроны и позитроны обладают наибольшей стабильностью и являются частицами, распад которыхтеоретически и практически невозможен. Они являются неделимыми (по заряду и массе), то есть: самопроизвольное (или принудительное) разделение электрона или позитрона на несколько калиброванных или «разнокалиберных» частей - исключается.

6.9. Электрон вечен и он не может «исчезнуть» до тех пор, пока не встретится с другой частицей, имеющей равные по величине, но противоположные по знаку электрический и магнитный заряды (позитрон).

6.10. Поскольку из электромагнитных волн могут появиться только две эталонные (калиброванные) частицы: электрон и позитрон, то на их основе могут появиться только эталонные кварки, протоны и нейтроны. Поэтому вся видимая (барионная) материя нашей и всех других вселенных состоит из одинаковых химических элементов (таблица Менделеева) и везде действуют единые физические константы и фундаментальные законы, аналогичные «нашим» законам. Появление в любой точке бесконечного пространства «других» элементарных частиц и «других» химических элементов - исключается.

6.11. Вся видимая материя нашей Вселенной образовалась из фотонов (предположительно СВЧ-диапазона) по единственно возможной схеме: фотон → электрон-позитронная пара → дробные частицы → кварки, глюон → протон (водород). Поэтому вся «твёрдая» материя нашей Вселенной (включая Homo sapiens’ов) является уплотнёнными электрическими и магнитными полями фотонов. Других «материй» для её образования в Космосе не было, нет и быть не может.

P.S. Электрон неисчерпаем?

Содержание статьи

ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение – релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)

Все электроны тождественны и подчиняются статистике Ферми – Дирака . Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов – валентных электронов, определяющих химические свойства атомов, – зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е . Другое следствие состоит в том, что электронные «облака», окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (m e » 0,51 МэВ » 0,91Ч 10 –27 г), заряд (- e » - 1,6Ч 10 –19 Кл) и спин (1 / 2 ћ » 1/ 2 Ч 0,66Ч 10 –33 ДжЧ с, где – постоянная Планка h , деленная на 2p ). Через них выражаются все остальные характеристики электрона, например магнитный момент (» 1,001m 3 » 1,001Ч 0,93Ч 10 –23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см . ниже ).

Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е . Наименование «электрон» вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают «катодные лучи», несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е , то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.

Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).

Из уравнения Дирака вытекало существование еще одной частицы – положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і 2 ( 2 – энергия покоя электрона), либо Ј – 2 ; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского «моря» электронов с отрицательными энергиями удалить один электрон, то возникшая электронная «дырка» будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).

По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать «атом», так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, – обычно их два. (С точки зрения «моря» электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку – незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна 2 . Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией «конвертируется» в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример – распад первого возбужденного состояния ядра 16 О, изотопа кислорода.

Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад – процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия «бета-лучи», исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица – нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:

Нейтрон ® протон + электрон + антинейтрино.

Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой «рождение пары» из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К -захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.

Роль в науке и технике.

Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях – для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах – установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.

На основе установленных М. Фарадеем законов электролиза ирландский ученый Д. Стоней выдвинул гипотезу о том, что существует элементарный заряд внутри атома. И в 1891 г. этот заряд Стоней предложил назвать электроном. Величину заряда электрона часто обозначают e или .

Законы электролиза еще не являются доказательством существования электрона как элементарного электрического заряда. Так, существовало мнение, о том, что все одновалентные ионы могут иметь разные заряды, а их средняя величина равна заряду электрона. Для доказательства существования в природе элементарного заряда следовало провести измерение зарядов отдельных ионов, а не суммарное количество электричества. Кроме того, открытым оставался вопрос о том, что связан ли заряд с какой-либо частицей вещества. Существенный вклад в решении этих вопросов сделали Ж. Перрен и Дж. Томсон. Они исследовали законы движения частиц катодных лучей в электрическом и магнитном полях. Перрен показал, что катодные лучи являются потоком частиц, которые несут отрицательный заряд. Томсон установил, что все данные частицы имеют равные отношения заряда к массе:

Помимо этого Томсон показал, что для разных газов отношение частиц катодных лучей одинаково, и не зависит от материала, из которого изготавливался катод. Отсюда можно было сделать вывод о том, что частицы, которые входят в состав атомов разных элементов, одинаковы. Сам Томсон сделал вывод о том, что атомы являются делимыми. Из атома любого вещества можно вырвать частицы, имеющие отрицательный заряд и очень малую массу. Все данные частицы обладают одинаковой массой и одинаковым зарядом. Такие частицы назвали электронами.

Опыты Милликена и Иоффе

Американский ученый Р. Милликен экспериментально доказал то, что элементарный заряд существует. В своих опытах он измерял скорость движения капель масла в однородном электрическом поле, которое создавалось между двумя электрическими пластинами. Капля заряжалась при столкновении с ионом. Сравнивались скорости движения капли не имеющей заряда и этой же капли после столкновения с ионом (приобретшей заряд). Зная напряженность поля между пластинами, вычислялся заряд капли.

Опыты Милликена повторил А.Ф. Иоффе. Он использовал металлические пылинки вместо капель масла. Изменяя напряженность поля между пластинками, Иоффе добивался равенства силы тяжести и силы Кулона, пылинка при этом оставалась неподвижной. Пылинку освещали ультрафиолетом. Заряд ее при этом изменялся, для уравновешивания силы тяжести приходилось изменять напряженность поля. По полученным величинам напряженности ученый судил об отношении электрических зарядов пылинки.

В опытах Милликена и Иоффе было показано, что заряды пылинок и капель всегда изменялись скачком. Минимальное изменение заряда было равно:

Электрический заряд всякого заряженного тела равен целому числу и кратен заряду электрона. Сейчас существует мнение, что имеются элементарные частицы - кварки, которые обладают дробным зарядом ().

Таким, образом, заряд электрона считают равным:

Примеры решения задач

ПРИМЕР 1

Задание В плоском конденсаторе, расстояние, между пластинами которого равно d, неподвижна капля масла, масса ее m. Какое количество избыточных электронов находится на ней, если разность потенциалов между пластинами составляет U?
Решение В данной задаче рассматривается аналог опыта Милликена. На каплю масла действует две силы, которые взаимно компенсируют друг друга. Это сила тяжести и сила Кулона (рис.1).

Так как поле внутри плоского конденсатора можно считать однородным, имеем:

где E - напряжённость электростатического поля в конденсаторе.

Величину электростатической силы можно найти как:

Поскольку частица находится в равновесии и не движется, то по Второму закону Ньютона получаем:

Из формулы (1.3) выразим заряд частицы:

Зная величину заряда электрона (), число избыточных электронов (создающих заряд капли), найдем как:

Ответ

ПРИМЕР 2

Задание Какое количество электронов потеряла капля после облучения ультрафиолетом (см. Пример 1), если ускорение, с которым она стала двигаться вниз равно a?

Решение Второй закон Ньютона для этого случая запишем как:

Сила кулона изменилась, так как изменился заряд частицы после облучения:

В соответствии со вторым законом Ньютона имеем:

Электрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", под названием "Электрон в полевой теории", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку. В итоге физика скатывалась в мир математических сказок.

    1 Радиус электрона
    2 Электрическое поле электрона
    3 Магнитный момент электрона
    4 Масса покоя электрона
    5 Новая физика: Электрон (элементарная частица) - итог

Электрон (англ. Electron) - легчайшая элементарная частица, обладающая электрическим зарядом. Квантовое число L=1/2 (спин = 1/2) - группа лептоны, подгруппа электрона, электрический заряд -e (систематизация по полевой теории элементарных частиц). Стабильность электрона обусловлена наличием электрического заряда, при отсутствии которого электрон бы распадался аналогично мюонному нейтрино.

Согласно полевой теории элементарных частиц, электрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей.

Структура электромагнитного поля электрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,75%,
  • постоянное магнитное поле (H) - 1,8%,
  • переменное электромагнитное поле - 97,45%.

Этим объясняются ярко выраженные волновые свойства электрона и его нежелание участвовать в ядерных взаимодействиях. Структура электрона приведена на рисунке.

1 Радиус электрона

Радиус электрона (расстояние от центра частицы до места в котором достигается максимальная плотность массы) определяемый по формуле:

равен 1,98 ∙10 -11 см.

Занимаемого электроном, определяемый по формуле:

равен 3,96 ∙10 -11 см. К величине r 0~ добавился еще радиус кольцевой области, занимаемой переменным электромагнитным полем электрона. Необходимо помнить, что часть величины массы покоя, сосредоточенной в постоянных (электрическом и магнитном) полях электрона находится за пределами данной области, в соответствии с законами электродинамики.

Электрон больше любого атомного ядра, поэтому не может присутствовать в атомных ядрах, а рождается в процессе распада нейтрона, также как позитрон рождается в процессе распада в ядре протона.

Утверждения о том, что радиус электрона порядка 10 -16 см бездоказательные и противоречат классической электродинамике. При таких линейных размерах электрон должен быть тяжелее протона.

2 Электрическое поле электрона

Электрическое поле электрона состоит из двух областей: внешней области с отрицательным зарядом и внутренней области с положительным зарядом. Размер внутренней области определяется радиусом электрона. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд электрона -e. В основе его квантования лежат геометрия и строение элементарных частиц.

электрического поля электрона в точке (А) в дальней зоне (r > > r e) точно, в системе СИ равен:

электрического поля электрона в дальней зоне (r > > r e) точно, в системе СИ равна:

где n = r/|r| - единичный вектор из центра электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r e =Lħ/(m 0~ c) - радиус электрона в полевой теории, L - главное квантовое число электрона в полевой теории, ħ - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося электрона, c - скорость света. (В системе СГС отсутствует множитель .)

Данные математические выражения верны для дальней зоны электрического поля электрона: (r>>r e), а голословные утверждения что "электрическое поле электрона остается кулоновским вплоть до расстояний 10 -16 см" не имеет ничего общего с действительностью - это одна из сказок, противоречащая классической электродинамике.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы. А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой.В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков"внутри электрона - лучше если взять 8 "кварков". Понятное дело, что это выходит за рамки стандартной модели.

У электрона, как и у любой другой заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса:

  • электрический радиус внешнего постоянного электрического поля (заряда -1.25e) - r q- = 3.66 10 -11 см.
  • электрический радиус внутреннего постоянного электрического поля (заряда +0.25e) - r q+ = 3 10 -12 см.

Данные характеристики электрического поля электрона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения, и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля электрона в ближней зоне.

Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.

Напряженность E электрического поля электрона в ближней зоне (r ~ r e), в системе СИ, как векторная сумма, приблизительно равна:

где n - =r - /r - единичный вектор из ближней (1) или дальней (2) точки заряда q - электрона в направлении точки наблюдения (А), n + =r + /r - единичный вектор из ближней (1) или дальней (2) точки заряда q + электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до проекции точки наблюдения на плоскость электрона, q - - внешний электрический заряд -1.25e, q + - внутренний электрический заряд +0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости электрона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (q - =-1.25e и q + =+0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Потенциал электрического поля электрона в точке (А) в ближней зоне (r ~ r e), в системе СИ приблизительно равен:

где r 0 - нормировочный параметр, величина которого может отличаться от в формуле E. (В системе СГС отсутствует множитель .) Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля электрона.

3 Магнитный момент электрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Поскольку величины главного квантового числа L и спина у лептонов совпадают, то могут совпадать и величины магнитных моментов заряженных лептонов у обеих теорий.

Полевая теория элементарных частиц не считает магнитный момент электрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так, основной магнитный момент электрона создается током:

  • (-) с магнитным моментом -0,5 eħ/m 0e c

Для получения результирующего магнитного момента электрона надо умножить на процент энергии переменного электромагнитного поля, разделенный на 100 процентов и добавить спиновую составляющую (смотри Полевая теория элементарных частиц исходник), в результате получим 0,5005786 eħ/m 0e c. Для того чтобы перевести в обычные магнетоны Бора надо полученное число умножить на два.

4 Масса покоя электрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и электрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле.

Как следует из приведенной формулы, величина массы покоя электрона зависит от условий, в которых электрон находится . Так поместив электрон в постоянное внешнее электрическое поле, мы повлияем на E 2 , что отразится на массе частицы. Аналогичная ситуация возникнет при помещении электрона в постоянное магнитное поле.

5 Новая физика: Электрон (элементарная частица) - итог

Перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала . Вы увидели, что у электрона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, что линейные размеры электрона значительно превышают линейные размеры протона. Вы увидели, из чего складывается масса покоя электрона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы зависит от полей, в которых находится электрон. Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи .

Владимир Горунович