Теория скрытых параметров. Скрытые параметры в квантовой механике и теорема белла


Экспериментальное изучение квантовых систем позволило обнаружить наличие у них статистических свойств: повторение эксперимента с квантовой системой в фиксированных 50 экспериментальных условиях способно приводить к неповторяющимся результатам. Примером может служить последовательное прохождение фотонов с одинаковой поляризацией через анализатор: одни фотоны проходят сквозь него, а другие - отражаются. Квантовая механика правильно описывает статистику подобных экспериментов, но не объясняет природу этой статистичности; последняя постулируется квантовой теорией.

Существующие гипотезы о природе статистичности квантовых систем четко разделяются на два класса. К первому относятся гипотезы, связывающие статистические свойства квантовых систем с корпускулярно-волновым дуализмом свойств микрочастиц, с влиянием на частицы вакуума физических полей и т. п. Общим для них является признание объективного существования в микромире случайных явлений. Диалектический материализм рассматривает статистическую связь между начальным состоянием системы и результатом эксперимента как новый характер причинных связей, не сводящийся к классической причинности. Об упрощенном, приблизительном отображении классической причинностью объективной связи явлений писал В. И. Ленин [2, т. 18, с. 139 ] задолго до создания квантовой механики.

(Логическое завершение первой гипотезы в рамках концепции целостности - вывод о том, что естественным основанием статистичности квантовых объектов является объективное свойство конечной недетализируемости их состояний в терминах элементов и множеств):

Ко второму классу относятся гипотезы, предполагающие наличие в комплексе квантовая система - измерительный прибор так называемых скрытых параметров, которые пока не удалось наблюдать. Предполагается, что каждое значение скрытого параметра однозначно определяет результат отдельного эксперимента, а наблюдаемая и описываемая квантовой механикой статистичность есть результат усреднения по всем значениям скрытых параметров. Таким образом, эти гипотезы предполагают одно-однозначную связь между значением скрытого параметра и результатом отдельного эксперимента, т. е. существование в квантовой физике классических причинных связей.

Выяснение того, какая из указанных двух возможностей реализуется в природе, имеет принципиальное значение для физики и философии, так как связано с вопросом о существовании или не существовании неклассических причинных связей.

Критика выводов эксперимента была дана Бором, который показал, что возникший парадокс есть результат предположения о локальности квантовых систем [28, с. 187-188, 425-428 ]. Отказ от этого предположения, т. е. признание существования корреляции между разделившимися частями квантовой системы (характеризуемого термином «целостность»), устраняет парадокс ЭПР.

Именно анализ парадокса ЭПР привел Бора к формулированию принципа дополнительности для квантовых систем, который выражает одно из основных отличий последних от систем классических. Принцип дополнительности требует рассмотрения квантовой системы и измерительного прибора как единой, целостной системы. Результаты измерения квантовой системы зависят от ее состояния, а также от устройства и состояния измерительного прибора. Это свойство квантовых систем Фок назвал относительностью к средствам измерения .

В трех экспериментах изучалась корреляция поляризаций фотонов, излученных при аннигиляции позитрония. В работах Касдей, Ульмана и By [208; 209 ] получены результаты, согласующиеся с КМ. Гутковски, Нотарриго и Пенниси пришли к выводу, что результаты согласуются с ТСП. Однако поскольку начальное состояние позитрония не известно, а результаты работы соответствуют верхней границе неравенства Белла и лежат между квантово-механическими результатами, соответствующими различным предположениям о начальном состоянии позитрония, надежного вывода из этой работы сделать нельзя. В работе Ламехи-Рахти и Миттига изучалась корреляция между поляризациями двух протонов при протон-протонном рассеянии; экспериментальные результаты согласуются с КМ.

В следующей группе экспериментов изучается корреляция между поляризациями двух фотонов, излучаемых атомом при каскадном радиационном переходе. В работе Фридмана и Клаузера используются атомы кальция; результаты согласуются с КМ.

В исследованиях Холта и Пипкина использовались атомы ртути; результаты согласуются с ТСП, но получены они недостаточно чисто и поэтому ненадежны. Это видно из работы Клаузера, который повторил опыт на основе другого метода возбуждения атомов [189; 227; 228 ]. Полученные им результаты вполне достоверны и согласуются с КМ. Фрей и Томсон используют излучение другого изотопа ртути и другой радиационный каскад; полученные результаты согласуются с КМ .

Особого внимания заслуживает эксперимент Аспека, Гренжье и Роже , исследующих излучение кальция. Авторы значительно увеличили число измерений по сравнению с предыдущими работами и получили большую статистическую точность. Результаты хорошо согласуются с КМ и нарушают неравенство Белла на девять стандартных отклонений, что делает выводы весьма надежными. Увеличение расстояния от источника до каждого анализатора до 6,5 м не меняло результатов опыта, что указывает на независимость дальних корреляций от расстояния.

Накопленный теоретический и экспериментальный материал еще не позволяет сделать окончательный выбор между ТСП и КМ. Формулировка постулата локальности и структура ТСП могут совершенствоваться. Уже имеется работа, обобщающая теорему Белла . Новые эксперименты могут быть выполнены с другими объектами; имеется предложение использовать для 55 эксперимента частицы, распадающиеся в результате слабого взаимодействия и т. п. [198; 243 ].

Тем не менее на основании имеющихся теоретических и экспериментальных работ можно сделать следующие выводы.

    Экспериментальные данные, по-видимому, противоречат локальной ТСП и основанной на ней теореме Белла. Два эксперимента, согласующиеся с теоремой Белла, относятся к числу наиболее ранних, выполнены недостаточно чисто и не подтверждаются более поздними работами.

    Таким образом, существующие ТСП противоречат наблюдаемым свойствам квантовых систем. Пока не удалось «подставить» ТСП под КМ и восстановить классическую причинность в квантовой физике. Нерелятивистская КМ в своей области пока остается единственной теорией, правильно описывающей экспериментальные факты.

    Существование в квантовых системах дальних корреляций установлено экспериментально: непосредственно - путем подтверждения КМ - и косвенно - путем фальсификации теоремы Белла и постулата локальности, на котором она основана.

    Наличие дальних корреляций не является спецификой опытов типа ЭПР, они хорошо известны и в других квантовых явлениях: интерференции света в опыте Майкельсона, существование сверхтекучей компоненты в жидком гелии и куперовских электронных пар в сверхпроводниках .

    Альтернатива - локальность или целостность - решается в пользу целостности квантовых систем, которая заложена в КМ в виде принципа неразличимости одинаковых частиц и принципа дополнительности.

    Наблюдаемое экспериментально и описываемое аппаратом КМ свойство квантовых систем - сохранение корреляций между частями системы при стремлении к нулю взаимодействия между ними - не является тривиальным . Для его интерпретации необходим диалектический подход.

    Особенно остро проблема целостности, вопрос о соотношении части и целого, поставлен физикой элементарных частиц. Достигнутое объединение электромагнитного и слабого взаимодействия и стоящая перед современной физикой задача «великого объединения» всех взаимодействий по сути представляет собой различные этапы отображения в физике целостности окружающего мира, всеобщая связь и взаимозависимость явлений которого составляет один из законов материалистической диалектики. 56

«Бог не играет в кости со Вселенной».

Этими словами Альберт Эйнштейн бросил вызов коллегам, разрабатывавшим новую теор ию - квантовую механику. По его мнению, принцип неопределенности Гейзенберга и уравнение Шрёдингера вносили в микромир нездоровую неопределенность. Он был уверен, что Создатель не мог допустить, чтобы мир электронов так разительно отличался от привычного мира ньютоновских бильярдных шаров. Фактически, на протяжении долгих лет Эйнштейн играл роль адвоката дьявола в отношении квантовой механики, выдумывая хитроумные парадоксы, призванные завести создателей новой теор ии в тупик. Тем самым, однако, он делал доброе дело, серьезно озадачивая теор етиков противоположного лагеря своими парадоксами и заставляя глубоко задумываться над тем, как их разрешить, что всегда бывает полезно, когда разрабатывается новая область знаний.

Есть странная ирония судьбы в том, что Эйнштейн вошел в историю как принципиальный оппонент квантовой механики, хотя первоначально сам стоял у ее истоков. В частности, Нобелевскую премию по физике за 1921 год он получил вовсе не за теор ию относительности, а за объяснение фотоэлектрического эффекта на основе новых квантовых представлений, буквально захлестнувших научный мир в начале ХХ века.

Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций (см. Квантовая механика), а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотез у скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики - результат неполноты самой теор ии, из-за чего она и не позволяет их доподлинно определить.

Теорию скрытой переменной можно наглядно представить примерно так: физическим обоснованием принципа неопределенности служит то, что измерить характеристики квантового объекта, например электрона, можно лишь через его взаимодействие с другим квантовым объектом; при этом состояние измеряемого объекта изменится. Но, возможно, есть какой-то иной способ измерения с использованием неизвестных нам пока что инструментов. Эти инструменты (назовем их «субэлектронами»), возможно, будут взаимодействовать с квантовыми объектами, не изменяя их свойств, и принцип неопределенности будет неприменим к таким измерениям. Хотя никаких фактических данных в пользу гипотез такого рода не имелось, они призрачно маячили на обочине главного пути развития квантовой механики - в основном, я полагаю, по причине психологического дискомфорта, испытываемого многими учеными из-за необходимости отказа от устоявшихся ньютоновских представлений об устройстве Вселенной.

И вот в 1964 году Джон Белл получил новый и неожиданный для многих теор етический результат. Он доказал, что можно провести определенный эксперимент (подробности чуть позже), результаты которого позволят определить, действительно ли квантово-механические объекты описываются волновыми функциями распределения вероятностей, как они есть, или же имеется скрытый параметр, позволяющий точно описать их положение и импульс, как у ньютоновского шарика. Теорема Белла, как ее теперь называют, показывает, что как при наличии в квантово-механической теор ии скрытого параметра, влияющего на любую физическую характеристику квантовой частицы, так и при отсутствии такового можно провести серийный эксперимент, статистические результаты которого подтвердят или опровергнут наличие скрытых параметров в квантово-механической теор ии. Условно говоря, в одном случае статистическое соотношение составит не более 2:3, а в другом - не менее 3:4.

(Тут я хочу в скобках заметить, что в том году, когда Белл доказал свою теор ему, я был студентом-старшекурсником в Стэнфорде. Рыжебородого, с сильным ирландским акцентом Белла было трудно не заметить. Помню, я стоял в коридоре научного корпуса Стэнфордского линейного ускорителя, и тут он вышел из своего кабинета в состоянии крайнего возбуждения и во всеуслышание заявил, что только что обнаружил по-настоящему важную и интересную вещь. И, хотя доказательств на этот счет у меня нет никаких, мне очень хотелось бы надеяться, что я в тот день стал невольным свидетелем его открытия.)

Однако опыт, предлагаемый Беллом, оказался простым только на бумаге и поначалу казался практически невыполнимым. Эксперимент должен был выглядеть так: под внешним воздействием атом должен был синхронно испустить две частицы, например два фотона, причем в противоположных направлениях. После этого нужно было уловить эти частицы и инструментально определить направление спина каждой и сделать это тысячекратно, чтобы накопить достаточную статистику для подтверждения или опровержения существования скрытого параметра по теор еме Белла (выражаясь языком математической статистики, нужно было рассчитать коэффициенты корреляции ).

Самым неприятным сюрпризом для всех после публикации теор емы Белла как раз и стала необходимость проведения колоссальной серии опытов, которые в ту пору казались практически невыполнимыми, для получения статистически достоверной картины. Однако не прошло и десятилетия, как ученые-экспериментаторы не только разработали и построили необходимое оборудование, но и накопили достаточный массив данных для статистической обработки. Не вдаваясь в технические подробности, скажу лишь, что тогда, в середине шестидесятых, трудоемкость этой задачи казалась столь чудовищной, что вероятность ее реализации представлялась равной тому, как если бы кто-то задумал посадить за пишущие машинки миллион дрессированных обезьян из пословицы в надежде отыскать среди плодов их коллективного труда творение, равное Шекспиру.

Когда в начале 1970-х годов результаты экспериментов были обобщены, всё стало предельно ясно. Волновая функция распределения вероятностей совершенно безошибочно описывает движение частиц от источника к датчику. Следовательно, уравнения волновой квантовой механики не содержат скрытых переменных. Это единственный известный случай в истории науки, когда блестящий теор етик доказал возможность экспериментальной проверки гипотез ы и дал обоснование метода такой проверки, блестящие экспериментаторы титаническими усилиями провели сложный, дорогостоящий и затяжной эксперимент, который в итоге лишь подтвердил и без того господствующую теор ию и даже не внес в нее ничего нового, в результате чего все почувствовали себя жестоко обманутыми в ожиданиях!

Однако не все труды пропали даром. Совсем недавно ученые и инженеры к немалому собственному удивлению нашли теор еме Белла весьма достойное практическое применение. Две частицы, испускаемые источником на установке Белла, являются когерентными (имеют одинаковую волновую фазу), поскольку испускаются синхронно. И это их свойство теперь собираются использовать в криптографии для шифровки особо секретных сообщений, направляемых по двум раздельным каналам. При перехвате и попытке дешифровки сообщения по одному из каналов когерентность мгновенно нарушается (опять же в силу принципа неопределенности), и сообщение неизбежно и мгновенно самоуничтожается в момент нарушения связи между частицами.

А Эйнштейн, похоже, был неправ: Бог все-таки играет в кости со Вселенной. Возможно, Эйнштейну все-таки следовало прислушаться к совету своего старого друга и коллеги Нильса Бора, который, в очередной раз услышав старый припев про «игру в кости», воскликнул: «Альберт, перестань же ты, наконец, указывать Богу, что ему делать!»

Можно экспериментально определить, имеются ли в квантовой механике неучтенные скрытые параметры.

«Бог не играет в кости со Вселенной».

Этими словами Альберт Эйнштейн бросил вызов коллегам, разрабатывавшим новую теорию — квантовую механику. По его мнению, принцип неопределенности Гейзенберга и уравнение Шрёдингера вносили в микромир нездоровую неопределенность. Он был уверен, что Создатель не мог допустить, чтобы мир электронов так разительно отличался от привычного мира ньютоновских бильярдных шаров. Фактически, на протяжении долгих лет Эйнштейн играл роль адвоката дьявола в отношении квантовой механики, выдумывая хитроумные парадоксы, призванные завести создателей новой теории в тупик. Тем самым, однако, он делал доброе дело, серьезно озадачивая теоретиков противоположного лагеря своими парадоксами и заставляя глубоко задумываться над тем, как их разрешить, что всегда бывает полезно, когда разрабатывается новая область знаний.

Есть странная ирония судьбы в том, что Эйнштейн вошел в историю как принципиальный оппонент квантовой механики, хотя первоначально сам стоял у ее истоков. В частности, Нобелевскую премию по физике за 1921 год он получил вовсе не за теорию относительности, а за объяснение фотоэлектрического эффекта на основе новых квантовых представлений, буквально захлестнувших научный мир в начале ХХ века.

Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций (см. Квантовая механика), а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики — результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

Теорию скрытой переменной можно наглядно представить примерно так: физическим обоснованием принципа неопределенности служит то, что измерить характеристики квантового объекта, например электрона, можно лишь через его взаимодействие с другим квантовым объектом; при этом состояние измеряемого объекта изменится. Но, возможно, есть какой-то иной способ измерения с использованием неизвестных нам пока что инструментов. Эти инструменты (назовем их «субэлектронами»), возможно, будут взаимодействовать с квантовыми объектами, не изменяя их свойств, и принцип неопределенности будет неприменим к таким измерениям. Хотя никаких фактических данных в пользу гипотез такого рода не имелось, они призрачно маячили на обочине главного пути развития квантовой механики — в основном, я полагаю, по причине психологического дискомфорта, испытываемого многими учеными из-за необходимости отказа от устоявшихся ньютоновских представлений об устройстве Вселенной.

И вот в 1964 году Джон Белл получил новый и неожиданный для многих теоретический результат. Он доказал, что можно провести определенный эксперимент (подробности чуть позже), результаты которого позволят определить, действительно ли квантово-механические объекты описываются волновыми функциями распределения вероятностей, как они есть, или же имеется скрытый параметр, позволяющий точно описать их положение и импульс, как у ньютоновского шарика. Теорема Белла, как ее теперь называют, показывает, что как при наличии в квантово-механической теории скрытого параметра, влияющего на любую физическую характеристику квантовой частицы, так и при отсутствии такового можно провести серийный эксперимент, статистические результаты которого подтвердят или опровергнут наличие скрытых параметров в квантово-механической теории. Условно говоря, в одном случае статистическое соотношение составит не более 2:3, а в другом — не менее 3:4.

(Тут я хочу в скобках заметить, что в том году, когда Белл доказал свою теорему, я был студентом-старшекурсником в Стэнфорде. Рыжебородого, с сильным ирландским акцентом Белла было трудно не заметить. Помню, я стоял в коридоре научного корпуса Стэнфордского линейного ускорителя, и тут он вышел из своего кабинета в состоянии крайнего возбуждения и во всеуслышание заявил, что только что обнаружил по-настоящему важную и интересную вещь. И, хотя доказательств на этот счет у меня нет никаких, мне очень хотелось бы надеяться, что я в тот день стал невольным свидетелем его открытия.)

Однако опыт, предлагаемый Беллом, оказался простым только на бумаге и поначалу казался практически невыполнимым. Эксперимент должен был выглядеть так: под внешним воздействием атом должен был синхронно испустить две частицы, например два фотона, причем в противоположных направлениях. После этого нужно было уловить эти частицы и инструментально определить направление спина каждой и сделать это тысячекратно, чтобы накопить достаточную статистику для подтверждения или опровержения существования скрытого параметра по теореме Белла (выражаясь языком математической статистики, нужно было рассчитать коэффициенты корреляции ).

Самым неприятным сюрпризом для всех после публикации теоремы Белла как раз и стала необходимость проведения колоссальной серии опытов, которые в ту пору казались практически невыполнимыми, для получения статистически достоверной картины. Однако не прошло и десятилетия, как ученые-экспериментаторы не только разработали и построили необходимое оборудование, но и накопили достаточный массив данных для статистической обработки. Не вдаваясь в технические подробности, скажу лишь, что тогда, в середине шестидесятых, трудоемкость этой задачи казалась столь чудовищной, что вероятность ее реализации представлялась равной тому, как если бы кто-то задумал посадить за пишущие машинки миллион дрессированных обезьян из пословицы в надежде отыскать среди плодов их коллективного труда творение, равное Шекспиру.

Когда в начале 1970-х годов результаты экспериментов были обобщены, всё стало предельно ясно. Волновая функция распределения вероятностей совершенно безошибочно описывает движение частиц от источника к датчику. Следовательно, уравнения волновой квантовой механики не содержат скрытых переменных. Это единственный известный случай в истории науки, когда блестящий теоретик доказал возможность экспериментальной проверки гипотезы и дал обоснование метода такой проверки, блестящие экспериментаторы титаническими усилиями провели сложный, дорогостоящий и затяжной эксперимент, который в итоге лишь подтвердил и без того господствующую теорию и даже не внес в нее ничего нового, в результате чего все почувствовали себя жестоко обманутыми в ожиданиях!

Однако не все труды пропали даром. Совсем недавно ученые и инженеры к немалому собственному удивлению нашли теореме Белла весьма достойное практическое применение. Две частицы, испускаемые источником на установке Белла, являются когерентными (имеют одинаковую волновую фазу), поскольку испускаются синхронно. И это их свойство теперь собираются использовать в криптографии для шифровки особо секретных сообщений, направляемых по двум раздельным каналам. При перехвате и попытке дешифровки сообщения по одному из каналов когерентность мгновенно нарушается (опять же в силу принципа неопределенности), и сообщение неизбежно и мгновенно самоуничтожается в момент нарушения связи между частицами.

А Эйнштейн, похоже, был неправ: Бог все-таки играет в кости со Вселенной. Возможно, Эйнштейну все-таки следовало прислушаться к совету своего старого друга и коллеги Нильса Бора, который, в очередной раз услышав старый припев про «игру в кости», воскликнул: «Альберт, перестань же ты, наконец, указывать Богу, что ему делать!»

John Stewart Bell, 1928-91

Физик из Северной Ирландии. Родился в Белфасте, в бедной семье. В 1949 году окончил Белфастский Королевский университет, после чего недолгое время работал там же в должности ассистента физической лаборатории. После нескольких лет работы в Институте атомной энергии в г. Харвелл (Harwell) в 1960 году Белл был приглашен в Европейский центр ядерных исследований (ЦЕРН) в Женеве и проработал там оставшуюся часть жизни. Жена ученого Мэри Белл также была физиком и сотрудником ЦЕРНа. Принесшую ему известность теорему Белл сформулировал во время краткосрочной стажировки в США.

Можно экспериментально определить, имеются ли в квантовой механике неучтенные скрытые параметры?

«Бог не играет в кости со Вселенной» - этими словами Альберт Эйнштейн бросил вызов коллегам, разрабатывавшим новую теорию - квантовую механику. По его мнению, принцип неопределенности Гейзенберга и уравнение Шрёдингера вносили в микромир нездоровую неопределенность. Он был уверен, что Создатель не мог допустить, чтобы мир электронов так разительно отличался от привычного мира ньютоновских бильярдных шаров. Фактически, на протяжении долгих лет Эйнштейн играл роль адвоката дьявола в отношении квантовой механики, выдумывая хитроумные парадоксы, призванные завести создателей новой теории в тупик. Тем самым, однако, он делал доброе дело, серьезно озадачивая теоретиков противоположного лагеря своими парадоксами и заставляя глубоко задумываться над тем, как их разрешить, что всегда бывает полезно, когда разрабатывается новая область знаний.

Есть странная ирония судьбы в том, что Эйнштейн вошел в историю как принципиальный оппонент квантовой механики, хотя первоначально сам стоял у ее истоков. В частности, Нобелевскую премию по физике за 1921 год он получил вовсе не за теорию относительности, а за объяснение фотоэлектрического эффекта на основе новых квантовых представлений, буквально захлестнувших научный мир в начале ХХ века.

Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций (см. Квантовая механика), а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики - результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

Теорию скрытой переменной можно наглядно представить примерно так: физическим обоснованием принципа неопределенности служит то, что измерить характеристики квантового объекта, например электрона, можно лишь через его взаимодействие с другим квантовым объектом; при этом состояние измеряемого объекта изменится. Но, возможно, есть какой-то иной способ измерения с использованием неизвестных нам пока что инструментов. Эти инструменты (назовем их «субэлектронами»), возможно, будут взаимодействовать с квантовыми объектами, не изменяя их свойств, и принцип неопределенности будет неприменим к таким измерениям. Хотя никаких фактических данных в пользу гипотез такого рода не имелось, они призрачно маячили на обочине главного пути развития квантовой механики - в основном, я полагаю, по причине психологического дискомфорта, испытываемого многими учеными из-за необходимости отказа от устоявшихся ньютоновских представлений об устройстве Вселенной.

И вот в 1964 году Джон Белл получил новый и неожиданный для многих теоретический результат. Он доказал, что можно провести определенный эксперимент (подробности чуть позже), результаты которого позволят определить, действительно ли квантово-механические объекты описываются волновыми функциями распределения вероятностей, как они есть, или же имеется скрытый параметр, позволяющий точно описать их положение и импульс, как у ньютоновского шарика. Теорема Белла, как ее теперь называют, показывает, что как при наличии в квантово-механической теории скрытого параметра, влияющего на любую физическую характеристику квантовой частицы, так и при отсутствии такового можно провести серийный эксперимент, статистические результаты которого подтвердят или опровергнут наличие скрытых параметров в квантово-механической теории. Условно говоря, в одном случае статистическое соотношение составит не более 2:3, а в другом - не менее 3:4.

(Тут я хочу в скобках заметить, что в том году, когда Белл доказал свою теорему, я был студентом-старшекурсником в Стэнфорде. Рыжебородого, с сильным ирландским акцентом Белла было трудно не заметить. Помню, я стоял в коридоре научного корпуса Стэнфордского линейного ускорителя, и тут он вышел из своего кабинета в состоянии крайнего возбуждения и во всеуслышание заявил, что только что обнаружил по-настоящему важную и интересную вещь. И, хотя доказательств на этот счет у меня нет никаких, мне очень хотелось бы надеяться, что я в тот день стал невольным свидетелем его открытия.)


Однако опыт, предлагаемый Беллом, оказался простым только на бумаге и поначалу казался практически невыполнимым. Эксперимент должен был выглядеть так: под внешним воздействием атом должен был синхронно испустить две частицы, например два фотона, причем в противоположных направлениях. После этого нужно было уловить эти частицы и инструментально определить направление спина каждой и сделать это тысячекратно, чтобы накопить достаточную статистику для подтверждения или опровержения существования скрытого параметра по теореме Белла (выражаясь языком математической статистики, нужно было рассчитать коэффициенты корреляции).

Самым неприятным сюрпризом для всех после публикации теоремы Белла как раз и стала необходимость проведения колоссальной серии опытов, которые в ту пору казались практически невыполнимыми, для получения статистически достоверной картины. Однако не прошло и десятилетия, как ученые-экспериментаторы не только разработали и построили необходимое оборудование, но и накопили достаточный массив данных для статистической обработки. Не вдаваясь в технические подробности, скажу лишь, что тогда, в середине шестидесятых, трудоемкость этой задачи казалась столь чудовищной, что вероятность ее реализации представлялась равной тому, как если бы кто-то задумал посадить за пишущие машинки миллион дрессированных обезьян из пословицы в надежде отыскать среди плодов их коллективного труда творение, равное Шекспиру.

Когда в начале 1970-х годов результаты экспериментов были обобщены, всё стало предельно ясно. Волновая функция распределения вероятностей совершенно безошибочно описывает движение частиц от источника к датчику. Следовательно, уравнения волновой квантовой механики не содержат скрытых переменных. Это единственный известный случай в истории науки, когда блестящий теоретик доказал возможность экспериментальной проверки гипотезы и дал обоснование метода такой проверки, блестящие экспериментаторы титаническими усилиями провели сложный, дорогостоящий и затяжной эксперимент, который в итоге лишь подтвердил и без того господствующую теорию и даже не внес в нее ничего нового, в результате чего все почувствовали себя жестоко обманутыми в ожиданиях!

Однако не все труды пропали даром. Совсем недавно ученые и инженеры к немалому собственному удивлению нашли теореме Белла весьма достойное практическое применение. Две частицы, испускаемые источником на установке Белла, являются когерентными (имеют одинаковую волновую фазу), поскольку испускаются синхронно. И это их свойство теперь собираются использовать в криптографии для шифровки особо секретных сообщений, направляемых по двум раздельным каналам. При перехвате и попытке дешифровки сообщения по одному из каналов когерентность мгновенно нарушается (опять же в силу принципа неопределенности), и сообщение неизбежно и мгновенно самоуничтожается в момент нарушения связи между частицами.

А Эйнштейн, похоже, был неправ: Бог все-таки играет в кости со Вселенной. Возможно, Эйнштейну все-таки следовало прислушаться к совету своего старого друга и коллеги Нильса Бора, который, в очередной раз услышав старый припев про «игру в кости», воскликнул: «Альберт, перестань же ты, наконец, указывать Богу, что ему делать!»

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Комментарии: 0

    Профессор физики Джим Аль-Халили исследует наиболее точную и одну из самых запутанных научных теорий - квантовую физику. В начале 20-го века учёные проникли в скрытые глубины материи, в субатомные строительные блоки мира вокруг нас. Они обнаружили явления, которые отличаются от всего увиденного ранее. Мир, где всё может находится во многих местах одновременно, где действительность по-настоящему существует, лишь когда мы наблюдаем за ней. Альберт Эйнштейн противился одной только мысли о том, что в основе сущности природы лежит случайность. Квантовая физика подразумевает, что субатомные частицы могут взаимодействовать быстрее скорости света, а это противоречит его теории относительности.

    Французский физик Пьер Симон Лаплас поставил важный вопрос, о том, всё ли в мире предопределено предыдущим состоянием мира, либо же причина может вызвать несколько следствий. Как и предполагается философской традицией сам Лаплас в своей книге «Изложение системы мира» не задавал никаких вопросов, а сказал уже готовый ответ о том, что да, всё в мире предопределено, однако как часто и случается в философии предложенная Лапласом картина мира не убедила всех и тем самым его ответ породил дискуссию вокруг того вопроса, которая продолжается и по сей день. Несмотря на мнение некоторых философов от том, что квантовая механика разрешила данный вопрос в пользу вероятностного подхода, тем не менее, теория Лапласа о полной предопределенности или как её иначе называют теория лапласовского детерминизма обсуждаема и сегодня.

    Если известны начальные условия системы, можно, используя законы природы, предсказать ее конечное состояние.

    В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В квантовой механике

Теория скрытых параметров (ТСП) - традиционное, но не единственное основание для построения различных типов теоремы Белла. Отправной точкой может быть также признание существования положительно определённой функции распределения вероятностей. Исходя из этого предположения, не прибегая к дополнительным допущениям, в работе сформулированы и доказаны парадоксы Белла разнообразных видов. На конкретном примере показано, что формальный квантовый расчёт иногда даёт отрицательные значения фигурирующих в доказательстве совместных вероятностей. Сделана попытка выяснения физического смысла этого результата и предложен алгоритм измерения отрицательных совместных вероятностей такого типа .

Так как законы квантовой теории предсказывают результаты эксперимента, вообще говоря, только статистически, то, основываясь на классической точке зрения, можно было бы предположить, что существуют скрытые параметры, которые, будучи ненаблюдаемы в любом обычном эксперименте, в действительности определяют результат эксперимента, как это всегда считалось ранее в соответствии с принципом причинности. Поэтому была предпринята попытка изобрести такие параметры внутри рамок квантовой механики.

В узком значении, применимом в квантовой механике и теоретической физике микромира, где перестаёт действовать детерминизм законов макроскопической физики, теория скрытых параметров послужила важным инструментом познания.

Но значение подхода к теории скрытых параметров, предпринятого в рамках изучения микромира и квантовомеханических парадоксов, не ограничивается лишь этим кругом явлений. Возможно более широкое, истинно философское истолкование причин, по которым это явление имеет место в нашем мире.

В философии познания

Однако затронутый вопрос о скрытых параметрах имеет отношение не только к узкофизическим проблемам. Он имеет отношение к общей методологии познания. Небольшой отрывок из трактата о понимании, написанного А. М. Никифоровым, помогает разобраться в сущности данного явления:

Для начала попробуем понять, что представляет собой понимание на привычном бытовом уровне. Можно сказать, что понимание представляет собой процесс сведения непонятного к понятному. То есть посредством доступных логических манипуляций мы из понятных нам представлений строим представление (модель) того, что ранее нам было непонятно. […] Существует другой подход к пониманию, когда декларируется наличие некоей сущности или субстанции, обладающей необходимыми свойствами, которые обеспечивают существование интересующего нас явления… Следует заметить, что этот подход лежит в основе теории относительности и квантовой механики, которые декларируют, как, но не объясняют, почему. […] Надо сказать, что если первый подход является более строгим и четким, то второй более мощным, универсальным и простым… Первый подход широко используется в науке, и его можно считать доминирующим, но и второй тоже применяется. Примером того является «теория скрытых параметров» [выделено автором], в соответствии с которой расхождение теории с экспериментом снимается введением некоего гипотетического объекта. Параметры этого объекта подставляются в формулу, и она начинает совпадать с экспериментом .

В квантовой механике эта теория имеет существенную область применения, хотя и не является общепринятой.

Исторический пример

Многие столетия геометрия Евклида считалась незыблемой скалой науки. Долгое время до начала физических исcледований микромира и астрофизических измерений не было никаких оснований считать её неполной. Однако ситуация изменилась в первое десятилетие 20-го века. В физике нарастал понятийный кризис, разрешить который смог Альберт Эйнштейн . Вместе с разрешением частных задач - согласования наблюдений с предсказаниями теорий того времени («спасения феномена») - в работах совместно с Нильсом Бором Эйнштейну удалось вывести гениальное заключение относительно возможности влияния масс на геометрию пространства и скорости движущегося объекта - при скоростях, соизмеримых со световыми , - на течение локального времени для данного объекта.

В геометрии это стало эпохальным теоретико-практическим открытием для космологии , хотя и перекликавшимся с теоретическими предпосылками, постулированными Германом Минковским , но занявшим особое место в современной космологии.

Эффект реального влияния гравитации на геометрию пространства можно считать «скрытым параметром» в классической теории Евклида, раскрытым однако в теории Эйнштейна. Рассуждение с точки зрения методологии познания: в одной понятийной (теоретической) системе некий параметр может быть скрытым, а в иной - стать раскрытым, востребованным и теоретически обоснованным. В первом случае его «нераскрытие» вовсе не означает отсутствия данного параметра в природе как таковой. Просто этот параметр не был значим, а потому и не найден, не введён кем-либо из учёных в «ткань» данной теории.

Ситуация эта довольно наглядно раскрывает свойство подобных «скрытых параметров». Это не отрицание теории-предшественницы, а нахождение объективных ограничений для её предсказаний. В рассматриваемом выше случае физическое пространство действительно с высокой точностью является евклидовым в случае недостаточно сильных гравитационных полей, действующих в рамках данного пространства (каковым является и земное поле), однако всё более и более перестаёт им быть при огромном усилении гравитационного потенциала. Последнее же в наблюдаемой природе может проявляться лишь во внеземных космических объектах типа чёрных дыр и некоторых иных «экзотических» космических объектах.

Примечания

Ссылки

  • И. З. Цехмистро, В. И. Штанько и др. «КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ» - ГЛАВА 3 КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ И ЭКСПЕРИМЕНТ: причинность и нелокальность в квантовой физике(Л. Э. Паргаманик)

Wikimedia Foundation . 2010 .

Смотреть что такое "Теория скрытых параметров" в других словарях:

    Теория суперструн Теория … Википедия

    Квантовая механика … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот… … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… … Википедия