Движение по наклонной плоскости. Физика: движение тела по наклонной плоскости


В данной статье рассказывается о том, как решать задачи про движение по наклонной плоскости. Рассмотрено подробное решение задачи о движении связанных тел по наклонной плоскости из ЕГЭ по физике.

Решение задачи о движении по наклонной плоскости

Прежде чем перейти непосредственно к решению задачи, как репетитор по математике и физике, рекомендую тщательно проанализировать ее условие. Начать нужно с изображения сил, которые действуют на связанные тела:

Здесь и — силы натяжения нити, действующие на левое и правое тело, соответственно, — сила реакции опоры, действующая на левое тело, и — силы тяжести, действующие на левое и правое тело, соответственно. С направлением этих сил все понятно. Сила натяжения направлена вдоль нити, сила тяжести вертикально вниз, а сила реакции опоры перпендикулярно наклонной плоскости.

А вот с направлением силы трения придется разбираться отдельно. Поэтому на рисунке она изображена пунктирной линией и подписана со знаком вопроса. Интуитивно понятно, что если правый груз будет «перевешивать» левый, то сила трения будет направлена противоположно вектору . Наоборот, если левый груз будет «перевешивать» правый, то сила трения будет сонаправлена с вектором .

Правый груз тянет вниз сила Н. Здесь мы взяли ускорение свободного падения м/с 2 . Левый груз вниз тоже тянет сила тяжести, но не вся целиком, а только ее «часть», поскольку груз лежит на наклонной плоскости. Эта «часть» равна проекции силы тяжести на наклонную плоскости, то есть катету в прямоугольном треугольнике , изображенном на рисунке, то есть равна Н.

То есть «перевешивает» все-таки правый груз. Следовательно, сила трения направлена так, как показано на рисунке (мы ее нарисовали от центра масс тела, что возможно в случае, когда тело можно моделировать материальной точкой):

Второй важный вопрос, с которым нужно разобраться, будет ли вообще двигаться эта связанная система? Вдруг окажется так, что сила трения между левым грузом и наклонной плоскостью будет настолько велика, что не даст ему сдвинуться с места?

Такая ситуация будет возможна в том случае, когда максимальная сила трения, модуль которой определяется по формуле (здесь — коэффициент трения между грузом и наклонной плоскостью, — сила реакции опоры, действующая на груз со стороны наклонной плоскости), окажется больше той силы, которая старается привести систему с движение. То есть той самой «перевешивающей» силы, которая равна Н.

Модуль силы реакции опоры равен длине катета в треугольнике по 3-музакону Ньютона (с какой по величине силой груз давит на наклонную плоскость, с такой же по величине силой наклонная плоскость действует на груз). То есть сила реакции опоры равна Н. Тогда максимальная величина силы трения составляет Н, что меньше, чем величина «перевешивающей силы».

Следовательно, система будет двигаться, причем двигаться с ускорением. Изобразим на рисунке эти ускорения и оси координат, которые нам понадобятся далее при решении задачи:

Теперь, после тщательного анализа условия задачи, мы готовы приступить к ее решению.

Запишем 2-ой закон Ньютона для левого тела:

А в проекции на оси координатной системы получаем:

Здесь с минусом взяты проекции, векторы которых направлен против направления соответствующей оси координат. С плюсом взяты проекции, векторы которых сонаправлен с соответствующей осью координат.

Еще раз подробно объясним, как находить проекции и . Для этого рассмотрим прямоугольный треугольник , изображенный на рисунке. В этом треугольнике и . Также известно, что в этом прямоугольном треугольнике . Тогда и .

Вектор ускорения целиком лежит на оси , поэтому и . Как мы уже вспоминали выше, по определению модуль силы трения равен произведению коэффициента трения на модуль силы реакции опоры. Следовательно, . Тогда исходная система уравнений принимает вид:

Запишем теперь 2-ой закон Ньютона для правого тела:

В проекции на ось получаем.

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).

На наклонной плоскости длиной 13 м и высотой 5 м лежит груз массой 26 кг. Коэффициент трения равен 0,5. Какую силу надо приложить к грузу вдоль плоскости, чтобы втащить груз? чтобы стащить груз
РЕШЕНИЕ

Какую силу надо приложить для подъема вагонетки массой 600 кг по эстакаде с углом наклона 20°, если коэффициент сопротивления движению равен 0,05
РЕШЕНИЕ

При проведении лабораторной работы были получены следующие данные: длина наклонной плоскости 1 м, высота 20 см, масса деревянного бруска 200 г, сила тяги при движении бруска вверх 1 Н. Найти коэффициент трения
РЕШЕНИЕ

На наклонной плоскости длиной 50 см и высотой 10 см покоится брусок массой 2 кг. При помощи динамометра, расположенного параллельно плоскости, брусок сначала втащили вверх по наклонной плоскости, а затем стащили вниз. Найти разность показаний динамометра
РЕШЕНИЕ

Чтобы удерживать тележку на наклонной плоскости с углом наклона α, надо приложить силу F1 направленную вверх вдоль наклонной плоскости, а чтобы поднимать вверх, надо приложить силу F2. Найти коэффициент сопротивления
РЕШЕНИЕ

Наклонная плоскость расположена под углом α = 30° к горизонту. При каких значениях коэффициента трения μ тянуть по ней груз труднее, чем поднимать его вертикально
РЕШЕНИЕ

На наклонной плоскости длиной 5 м и высотой 3 м находится груз массой 50 кг. Какую силу, направленную вдоль плоскости, надо приложить, чтобы удержать этот груз? тянуть равномерно вверх? тянуть с ускорением 1 м/с2? Коэффициент трения 0,2
РЕШЕНИЕ

Автомобиль массой 4 т движется в гору с ускорением 0,2 м/с2. Найти силу тяги, если уклон равен 0,02 и коэффициент сопротивления 0,04
РЕШЕНИЕ

Поезд массой 3000 т движется вниз под уклон, равный 0,003. Коэффициент сопротивления движению равен 0,008. С каким ускорением движется поезд, если сила тяги локомотива равна: а) 300 кН; б) 150 кН; в) 90 кН
РЕШЕНИЕ

Мотоцикл массой 300 кг начал движение из состояния покоя на горизонтальном участке дороги. Затем дорога пошла под уклон, равный 0,02. Какую скорость приобрел мотоцикл через 10 с после начала движения, если горизонтальный участок дороги он проехал за половину этого времени? Сила тяги и коэффициент сопротивления движению на всем пути постоянны и соответственно равны 180 Н и 0,04
РЕШЕНИЕ

Брусок массой 2 кг находится на наклонной плоскости с углом наклона 30°. Какую силу, направленную горизонтально (рис. 39), надо приложить к бруску, чтобы он двигался равномерно по наклонной плоскости? Коэффициент трения бруска о наклонную плоскость равен 0,3
РЕШЕНИЕ

Поместите на линейке небольшой предмет (резинку, монету и т. д.). Постепенно поднимайте конец линейки, пока предмет не начнет скользить. Измерьте высоту h и основание b полученной наклонной плоскости и вычислите коэффициент трения
РЕШЕНИЕ

С каким ускорением а скользит брусок по наклонной плоскости с углом наклона α = 30° при коэффициенте трения μ = 0,2
РЕШЕНИЕ

В момент начала свободного падения первого тела с некоторой высоты h второе тело стало скользить без трения с наклонной плоскости, имеющей ту же высоту h и длину l = nh. Сравнить конечные скорости тел у основания наклонной плоскости и время их движения.

Динамика и кинематика - это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Основная формула динамики

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

Здесь M и I - и инерции, соответственно, α - угловое ускорение.

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

S = v 0 *t ± a*t 2 /2

Здесь v 0 - значение начальной скорости тела, S - пройденный за время t путь вдоль прямолинейной траектории. Знак "+" следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак "-". Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

ω = ω 0 ± α*t;

θ = ω 0 *t ± α*t 2 /2

Здесь α и ω - и скорость, соответственно, θ - угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

Здесь r - радиус вращения.

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна Все эти показатели могут иметь различные параметры.

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Где N - реакция опоры, µ - коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

F = m*g*sin(φ) - µ*m*g*cos(φ) = m*g*(sin(φ) - µ*cos(φ)) = m*a

Здесь φ - это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

F = m*g*sin(φ) - F r = m*a

Где F r - Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, F r создает следующий момент:

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Задача на движение бруска по наклонной плоскости

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45 o . Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

m*g*(sin(φ) - µ*cos(φ)) = m*a =>

a = g*(sin(φ) - µ*cos(φ)) ≈ 4,162 м/с 2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

Откуда следует выразить время, и подставить известные значения:

t = √(2*S/a) = √(2*1/4,162) ≈ 0,7 с

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Задача со скатывающимся по плоскости цилиндром

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30 o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

m*g*sin(φ) - F r = m*a;

F r *r = I*α = I*a/r

Момент инерции I цилиндра вычисляется по формуле:

Подставим это значение во вторую формулу, выразим из нее силу трения F r и заменим полученным выражением ее в первом уравнении, имеем:

F r *r = 1/2*m*r 2 *a/r = >

m*g*sin(φ) - 1/2*m*a = m*a =>

a = 2/3*g*sin(φ)

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

v = a*t = a*√(2*S/a) = √(2*S*a) = √(4/3*S*g*sin(φ))

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.

Пусть тело, способное вращаться (например, цилиндр), катится по наклонной плоскости. Будем предполагать, что при движении не возникает скольжения. Это означает, что скорость тела в точке касания А равна нулю. Отсутствие скольжения обеспечивается действием сил со стороны наклонной плоскости. На вращающееся тело действуют: сила тяжести , сила нормальной реакции опорыи сила трения
(рис. 1.5). Векторы этих сил на рисунке показаны исходящими из их точек приложения. При отсутствии скольжения сила трения
есть сила трения покоя или сила трения сцепления.

У равнение движения центра масс тела согласно второму закону Ньютона имеет вид:

.

В скалярной форме относительно оси х , направленной вдоль плоскости вниз, это уравнение имеет вид:

Вращение тела вокруг оси, проходящей через центр масс С, обусловлено только силой трения, так как моменты сил нормальной реакции опоры и тяжести равны нулю, поскольку линии действия этих сил проходят через ось вращения. Поэтому уравнение динамики вращательного движения имеет вид:

,

где I – момент инерции тела,
– угловое ускорение,r – радиус тела,
– момент силы трения. Следовательно:

(1.11)

Из выражений (1.10) и (1.11) имеем:

(1.12)

Применим закон сохранения энергии к движению цилиндра по наклонной плоскости. Кинетическая энергия вращающегося тела равна сумме кинетической энергии поступательного движения центра масс этого тела и вращательного движения точек тела относительно оси, проходящей через центр масс:

, (1.13)

где ω – угловая скорость, которая связана со скоростью центра масс соотношением:

. (1.14)

При отсутствии скольжения сила трения приложена к тем точкам тела, которые лежат на мгновенной оси вращения А . Мгновенная скорость таких точек равна нулю, а потому приложенная к ним сила трения сцепления работы не производит и не влияет на величину полной кинетической энергии скатывающегося тела. Роль силы трения сцепления сводится к тому, чтобы привести тело во вращение и обеспечить чистое качение. При наличии силы трения сцепления работа силы тяжести идет на увеличение кинетической энергии не только поступательного, но и вращательного движения тела. Следовательно, закон сохранения энергии тела, катящегося по наклонной плоскости, запишется в виде:

, (1.15)

где кинетическая энергия Е к определяется по формуле (1.13), а потенциальная энергия Е п = mgh .

2. Описание лабораторной установки

Лабораторная установка (рис. 2.1.) представляет собой наклонную плоскость 1, высотой h и длиной l . В верхней точке плоскости установлен фиксирующий механизм 2; в нижней – контрольный датчик 3, соединенный с секундомером 4.

3. Порядок выполнения работы

1. Эксперимент с поступательно движущимся телом

      Включить в сеть электронный блок посредством сетевого шнура.

      Поместить тело (брусок) в фиксирующий механизм 2, при этом показания секундомера должны быть на нуле.

      Отпустить тело, при этом оно будет скользить вниз вдоль наклонной плоскости. После того как тело коснется контрольного датчика 3, снять показания с секундомера. Опыт провести не менее пяти раз.

      Измерить массу бруска m .

      Измерить длину l и высоту h наклонной плоскости.

      Данные занести в таблицу 1.

Таблица 1

l ,

h ,

m ,

t ,

,

,

,


11. Записать закон сохранения энергии для движущегося тела (1.9), проверить его выполнение с учетом силы трения для средних значений ,,
. Указать точность выполнения этого закона в процентном соотношении.