Фосфаты – вы откуда и зачем? Способ очистки сточных вод от фосфатов Содержание фосфатов в сточных водах.


Вопрос эффективной обработки загрязненной воды из стоков ― один из самых насущных вопросов в области экологии и защиты окружающей среды. Не секрет, что загрязнение веществами антропогенного происхождения ― едва ли не основная причина ухудшения качества сточной влаги.

Из-за нефтепродуктов, биогенных и органических элементов, а также поверхностно-активных веществ, жидкостные массы в стоках становятся просто – напросто непригодными для дальнейшего сброса в водоемы и почву.

Необходима тщательная переработка поверхностных вод, в процессе которой будут эффективно уничтожаться все виды существующих загрязнений. Современные методы обработки канализационной влаги должны, в частности, устранять азот аммонийный в сточных водах, а также другие виды загрязнений.

Откуда появляются химические элементы в стоках?

Если взять на анализ канализационную жидкость на территории современного частного дома, то можно обнаружить огромное количество самых разнородных элементов, среди которых большой процент элементов будет принадлежать к химической природе.

При анализе сточной влаги можно обнаружить азот общий в сточных водах, шестивалентный хром в сточных водах, фосфор общий в сточной воде, медь в сточных водах. Откуда в той влаге, которая является отходами жизнедеятельности человека, появляются все эти вещества?

Дело в том, что последние 10-20 лет промышленность развивалась бешеными темпами. В частности, для общего бытового пользования были выпущены десятки разнообразных моющих средств. Также налицо резкое увеличение спроса на автоматические стиральные машины.

Подобные факторы смогли изменить состав хозяйственно-бытовых канализационных вод. Развитая промышленность, которой так гордится человечество, поставила под вопрос нормальную, хорошую экологическую ситуацию на планете.


О чем можно говорить, если при совершении анализов можно найти азот аммонийный в сточных водах? В жидкостях объем подобных загрязнений может доходить иногда до крайне высокого, опасного уровня. Особенно опасны азот и фосфор, соединения которых запускают процесс эвтрофикации водоемов, то есть, повышают биологическую растительность водоемов.

В случае если баланс питательных веществ превышает допустимую норму, то водоем становится очагом роста различной нежелательной биологической растительности ― водорослей, нежелательных разновидностей планктона. Кроме всего прочего, из-за азота и фосфора нарушается процесс жизнедеятельности рыб.

О самых распространенных химических соединениях

В стоках можно в процессе исследования обнаружить широкий спектр различных химических соединений. Некоторые из них чрезвычайно опасные, другие ― умеренно-опасные. Однако все они не должны присутствовать в той влаге, которая попадает из канализации частного дома в почву и водоемы.

Цинк. Один из самых часто встречающихся в стоках элементов. Цинк - это микроэлемент, входящий в состав некоторых ферментов. Цинк содержится и в человеческом теле, преимущественно ― в костях и волосах. Предельно допустимая концентрация данного элемента в водоемах равняется 1 миллиграмму на литр.

Многочисленные жители частных загородных домов интересуются на форумах в интернете, откуда цинк в сточных водах. Ответ на этот вопрос прост и прозаичен: все химические элементы попадают в стоки из тех веществ, которые использует человек в быту. Веществами являются стиральные порошки, моющие средства, шампуни и т.д.


Азот. Этот элемент присутствует в стоках в двух видах ― в качестве органических и неорганических соединений. Азот органический в сточной воде образуется в результате попадания в канализацию веществ белковой природы ― фекалий и пищевых отходов.

Практически весь аммонийный азот образуется в сточной влаге во время гидролиза мочи, конечного продукта азотного обмена у людей. Помимо этого, соединения аммония образуются в результате аммонификации белковых соединений.

Основной параметр, важный для получения информации об объеме азотосодержащих веществ в канализационной влаге ― это показатель общего азота. Экологическая опасность азотных соединений разнится в зависимости от видов азотосодержащих веществ: нитриты представляют самую токсичную группу, нитраты ― наиболее безопасную, а среднюю позицию между ними занимает аммоний.

Фосфор. Этот элемент может присутствовать в стоках в различных видах - например, в растворенном состоянии: это ортофосфорная кислота и ее анионы. Также, фосфор присутствует в сточной влаге в виде поли-, мета- и пирофосфатов.

Три последних вещества активно применяются в хозяйстве: их можно найти в составе практически любого современного моющего средства. Кроме этого, вещества применяются с целью предотвращения образования накипи на посуде. Могут присутствовать в стоках и другие фосфорорганические соединения: нуклеопротеиды, фосфолипиды, а также нуклеиновые кислоты.

Железо. Вещества, в которых содержится железо, встречаются в стоках чаще всего. Это, вообще, один и наиболее распространенных элементов в природе. Нельзя сказать, что железо совсем не должно присутствовать в канализационной влаге.

Железо - архиважный микроэлемент, который в малом количестве просто необходим для растений и живых организмов. Однако железо общее в сточных водах, как правило, присутствует в количестве, превышающем допустимый уровень.

В подобных случаях необходима очистка водных масс. Также обязательным считаться будет определение сульфатов в сточных водах. Не менее важно найти органические соединения серы в сточных водах, и довести ПДК до нормального уровня.

Фосфор общий

Сумма минерального и органического фосфора. Так же, как и для азота, обмен фосфором между его минеральными и органическими формами с одной стороны, и живыми организмами - с другой, является основным фактором, определяющим его концентрацию. Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до 200 мкг/дм 3 .

Формы фосфора в природных водах

Химические формы фосфора Общий Фильтруемый (растворенный) Частицы
Общий Общий растворенный фосфор Общий фосфор в частицах
Ортофосфаты Общий растворенный и взвешенный фосфор Растворенные ортофосфаты Ортофосфаты в частицах
Гидролизируемые кислотой фосфаты Общие растворенные и взвешенные гидролизируемые кислотой фосфаты Растворенные гидролизируемые кислотой фосфаты Гидролизируемые кислотой фосфаты в частицах
Органический фосфор Общий растворенный и взвешенный органический фосфор Растворенный органический фосфор Органический фосфор в частицах

Фосфор - важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора (в виде минеральных удобрений с поверхностным стоком с полей (с гектара орошаемых земель выносится 0,4-0,6 кг фосфора), со стоками с ферм (0,01-0,05 кг/сут. на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003-0,006 кг/сут. на одного жителя), а также с некоторыми производственными отходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий) . Один из вероятных аспектов процесса эвтрофикации - рост сине-зеленых водорослей (цианобактерий), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях - при попадании большой массы водорослей внутрь организма может развиваться паралич. В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) в программы обязательных наблюдений за составом природных вод включено определение содержания общего фосфора (растворенного и взвешенного, в виде органических и минеральных соединений). Фосфор является важнейшим показателем трофического статуса природных водоемов.

Фосфор органический

В этом разделе не рассматриваются синтезированные в промышленности фосфорорганические соединения. Природные соединения органического фосфора поступают в природные воды в результате процессов жизнедеятельности и посмертного распада водных организмов, обмена с донными отложениями. Органические соединения фосфора присутствуют в поверхностных водах в растворенном, взвешенном и коллоидном состоянии.

Фосфор минеральный

Соединения минерального фосфора поступают в природные воды в результате выветривания и растворения пород, содержащих ортофосфаты (апатиты и фосфориты) и поступления с поверхности водосбора в виде орто-, мета-, пиро- и полифосфат-ионов (удобрения, синтетические моющие средства, добавки, предупреждающие образование накипи в котлах и т.п.), а также образуются при биологической переработке остатков животных и растительных организмов. Избыточное содержание фосфатов воде, особенно в грунтовой, может быть отражением присутствия в водном объекте примесей удобрений, компонентов хозяйственно-бытовых сточных вод, разлагающейся биомассы. Основной формой неорганического фосфора при значениях pH водоема больше 6,5 является ион HPO 4 2- (около 90%). В кислых водах неорганический фосфор присутствует преимущественно в виде H 2 PO 4 - . Концентрация фосфатов в природных водах обычно очень мала - сотые, редко десятые доли милиграммов фосфора в литре, в загрязненных водах она может достигать нескольких миллиграммов в 1 дм 3 . Подземные воды содержат обычно не более 100 мкг/дм 3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород. Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдается обычно весной и летом, максимальные — осенью и зимой, в морских водах — соответственно весной и осенью, летом и зимой. Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора . В методике оценки экологической ситуации, принятой Госкомэкологией РФ, рекомендован норматив содержания растворимых фосфатов в воде - 50 мкг/дм 3 . Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.

Полифосфаты

Me n (PO 3) n , Me n+2 P n O 3n+1 , Me n H 2 P n O 3n+1

Применяются для умягчения воды, обезжиривания волокна, как компонент стиральных порошков и мыла, ингибитор коррозии, катализатор, в пищевой промышленности. Малотоксичны. Токсичность объясняется способностью полифосфатов к образованию комплексов с биологически важными ионами, особенно с кальцием . Установленное допустимое остаточное количество полифосфатов в воде хозяйственно-питьевого назначения составляет 3,5 мг/дм 3 (лимитирующий показатель вредности - органолептический).

Соединения серы

Сероводород и сульфиды.

Обычно в водах сероводород не содержится или же присутствует в незначительных количествах в придонных слоях, главным образом в зимний период, когда затруднена аэрация и ветровое перемешивание водных масс. Иногда сероводород появляется в заметных количествах в придонных слоях водоемов и в летнее время в периоды интенсивного биохимического окисления органических веществ. Наличие сероводорода в водах служит показателем сильного загрязнения водоема органическими веществами. Сероводород в природных водах находится в виде недиссоциированных молекул H 2 S, ионов гидросульфида HS - и весьма редко - ионов сульфида S 2- . Соотношение между концентрациями этих форм определяется значениями рН воды: при рН < 10 содержанием ионов сульфида можно пренебречь, при рН=7 содержание H 2 S и HS - примерно одинаково, при рН=4 сероводород почти полностью (99,8%) находится в виде H 2 S. Главным источником сероводорода и сульфидов в поверхностных водах являются восстановительные процессы, протекающие при бактериальном разложении и биохимическом окислении органических веществ естественного происхождения и веществ, поступающих в водоем со сточными водами (хозяйственно-бытовыми, предприятий пищевой, металлургической, химической промышленности, производства сульфатной целлюлозы (0,01-0,014 мг/дм 3) и др.). Особенно интенсивно процессы восстановления происходят в подземных водах и придонных слоях водоемов в условиях слабого перемешивания и дефицита кислорода. Значительные количества сероводорода и сульфидов могут поступать со сточными водами нефтеперерабатывающих заводов, с городскими сточными водами, водами производств минеральных удобрений. Концентрация сероводорода в водах быстро уменьшается за счет окисления кислородом, растворенным в воде, и микробактериологических процессов (тионовыми, бесцветными и окрашенными серными бактериями). В процессе окисления сероводорода образуются сера и сульфаты. Интенсивность процессов окисления сероводорода может достигать 0,5 грамм сероводорода на литр в сутки. Причиной ограничения концентраций в воде является высокая токсичность сероводорода, а также неприятный запах, который резко ухудшает органолептические свойства воды, делая ее непригодной для питьевого водоснабжения и других технических и хозяйственных целей. Появление сероводорода в придонных слоях служит признаком острого дефицита кислорода и развития заморных явлений , . Для водоемов санитарно-бытового и рыбохозяйственного пользования наличие сероводорода и сульфидов недопустимо (ПДК - полное отсутствие) .

Сульфаты

Присутствуют практически во всех поверхностных водах и являются одним из важнейших анионов. Главным источником сульфатов в поверхностных водах являются процессы химического выветривания и растворения серосодержащих минералов, в основном гипса, а также окисления сульфидов и серы:

2FeS 2 + 7O 2 + 2H 2 O = 2FeSO 4 + 2H 2 SO 4 ;
2S + 3O 2 + 2H 2 O = 2H 2 SO 4 .

Значительные количества сульфатов поступают в водоемы в процессе отмирания организмов и окисления наземных и водных веществ растительного и животного происхождения и с подземным стоком. В больших количествах сульфаты содержатся в шахтных водах и в промышленных стоках производств, в которых используется серная кислота, например, окисление пирита. Сульфаты выносятся также со сточными водами коммунального хозяйства и сельскохозяйственного производства. Ионная форма SO 4 2- характерна только для маломинерализованных вод. При увеличении минерализации сульфатные ионы склонны к образованию устойчивых ассоциированных нейтральных пар типа CaSO 4 , MgSO 4 . Содержание сульфатных ионов в растворе ограничивается сравнительно малой растворимостью сульфата кальция (произведение растворимости сульфата кальция L=6,1·10 -5). При низких концентрациях кальция, а также в присутствии посторонних солей концентрация сульфатов может значительно повышаться. Сульфаты активно участвуют в сложном круговороте серы. При отсутствии кислорода под действием сульфатредуцирующих бактерий они восстанавливаются до сероводорода и сульфидов, которые при появлении в природной воде кислорода снова окисляются до сульфатов. Растения и другие автотрофные организмы извлекают растворенные в воде сульфаты для построения белкового вещества. После отмирания живых клеток гетеротрофные бактерии освобождают серу протеинов в виде сероводорода, легко окисляемого до сульфатов в присутствии кислорода. Концентрация сульфатов в природной воде лежит в широких пределах. В речных водах и в водах пресных озер содержание сульфатов часто колеблется от 5-10 до 60 мг/дм 3 , в дождевых водах - от 1 до 10 мг/дм 3 . В подземных водах содержание сульфатов нередко достигает значительно больших величин. Концентрация сульфатов в поверхностных водах подвержена заметным сезонным колебаниям и обычно коррелирует с изменением общей минерализации воды. Важнейшим фактором, определяющим режим сульфатов, являются меняющиеся соотношения между поверхностным и подземным стоком. Заметное влияние оказывают окислительно-восстановительные процессы, биологическая обстановка в водном объекте и хозяйственная деятельность человека . Повышенные содержания сульфатов ухудшают органолептические свойства воды и оказывают физиологическое воздействие на организм человека. Поскольку сульфат обладает слабительными свойствами, его предельно допустимая концентрация строго регламентируется нормативными актами. Весьма жесткие требования по содержанию сульфатов предъявляются к водам, питающим паросиловые установки, поскольку в присутствии кальция сульфаты образуют прочную накипь. Вкусовой порог сульфата магния лежит в пределах от 400 до 600 мг/дм 3 , для сульфата кальция - от 250 до 800 мг/дм 3 . Наличие сульфата в промышленной и питьевой воде может быть как полезным, так и вредным . ПДК в сульфатов составляет 500 мг/дм 3 , ПДК вр - 100 мг/дм 3 . Не замечено, чтобы сульфат в питьевой воде влиял на процессы коррозии, но если используются свинцовые трубы, то концентрация сульфатов выше 200 мг/дм 3 может привести к вымыванию в воду свинца.

Сероуглерод

Прозрачная летучая жидкость с резким запахом. Может в больших количествах попадать в открытые водоемы со сточными водами комбинатов вискозного шелка, заводов искусственной кожи и ряда других производств. При содержании сероуглерода в количестве 30-40 мг/дм 3 наблюдается угнетающее влияние на развитие сапрофитной микрофлоры. Максимальная концентрация, не оказывающая токсического действия на рыб — 100 мг/дм 3 . Сероуглерод является политропным ядом, вызывающим острые и хронические интоксикации. Поражает центральную и периферическую нервную систему, вызывает нарушения сердечно-сосудистой системы. Оказывает поражающее действие на органы желудочно-кишечного тракта. Нарушает обмен витамина В6 и никотиновой кислоты. ПДК в — 1,0 мг/дм 3 (лимитирующий показатель вредности — органолептический), ПДК вр — 1,0 мг/дм 3 (лимитирующий показатель вредности — токсикологический) , .

В этом разделе не рассматриваются синтезированные в промышленности фосфорорганические соединения. Природные соединения органического фосфора поступают в природные воды в результате процессов жизнедеятельности и посмертного распада водных организмов, обмена с донными отложениями.

Органические соединения фосфора присутствуют в поверхностных водах в растворенном, взвешенном и коллоидном состоянии.

Фосфор минеральный

Соединения минерального фосфора поступают в природные воды в результате выветривания и растворения пород, содержащих ортофосфаты (апатиты и фосфориты) и поступления с поверхности водосбора в виде орто-, мета-, пиро- и полифосфат-ионов (удобрения, синтетические моющие средства, добавки, предупреждающие образование накипи в котлах и т.п.), а также образуются при биологической переработке остатков животных и растительных организмов. Избыточное содержание фосфатов воде, особенно в грунтовой, может быть отражением присутствия в водном объекте примесей удобрений, компонентов хозяйственно-бытовых сточных вод, разлагающейся биомассы.

Основной формой неорганического фосфора при значениях pH водоема больше 6.5 является ион HPO42- (около 90%).

В кислых водах неорганический фосфор присутствует преимущественно в виде H2PO4- .

Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдается обычно весной и летом, максимальные - осенью и зимой, в морских водах - соответственно весной и осенью, летом и зимой.

Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора .

Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.

Полифосфаты

Men(PO3)n , Men+2PnO3n+1 , MenH2PnO3n+1

Применяются для умягчения воды, обезжиривания волокна, как компонент стиральных порошков и мыла, ингибитор коррозии, катализатор, в пищевой промышленности.

Малотоксичны. Токсичность объясняется способностью полифосфатов к образованию комплексов с биологически важными ионами, особенно с кальцием .

<< Предыдущий | Индекс | Литература | Следующий >>

© Эколайн, 1998

Соединения серы

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

Растворимость — фосфор

Cтраница 2

Эта операция слегка снижает растворимость фосфора удобрения в воде, но не влияет на его цит-ратную растворимость.  

Это распределение зависит от соотношения значений растворимости данной примеси в окисле и кремнии. Например, как показано на рис. 7 — 12, растворимость фосфора в кремнии больше, чем в окисле. Это приводит к обогащению фосфором прилегающего к окислу слоя кремния.  

Транзисторы типа р-п — р используются крайне редко, так как имеют худшие электрические параметры. Основное преимущество технологии изготовления транзисторов типа п-р — п связано с относительно (большим коэффициентом растворимости фосфора в кремнии, диффузия которого используется при создании области эмиттера. Кроме того, в транзисторах типа п-р — п неосновными носителями в базе являются электроны. Подвижность электронов при одинаковой температуре и концентрации примесей в кремнии приблизительно в два раза превышает подвижность дырок.  

Из этого ясно, что недостаток серы может возникать в областях, где с некоторого времени отказались от сульфатных удобрений и где навоз стали применять реже. Недостаток серы встречается сравнительно редко; однако, по нашему мнению, земледельцы-практики часто не обращают на это внимания, и в большинстве случаев, когда констатируют преимущество сульфата аммония или суперфосфата над аммонитратами или шлаками и объясняют это преимущество аммиачной формой азота или растворимостью фосфора, действительной причиной является именно присутствие серы.  

Вредное влияние фосфора на свойства сварных соединений заключается в снижении высокотемпературных характеристик металла шва вследствие ослабления межкристаллитных границ (при выделении легкоплавких включений) и в ухудшении механических свойств швов при нормальной и низких температурах. Последнее обусловлено снижением пластичности металла в результате растворения фосфора и наличием на границах кристаллитов хрупких неметаллических прослоек. Так как растворимость фосфора в аустените ниже, чем в феррите, опасность образования кристаллизационных трещин и снижения механических свойств металла шва значительно больше для швов с аустенитнои структурой.  

Обогащение расплава фосфором также вызывает образование горячих трещин по границам кристаллитов. Так как растворимость фосфора в аустени-те меньше, чем в феррите, опасность возникновения кристаллизационных трещин в аустенитных швах значительно больше.

Показатель – содержание фосфатов в воде

В швах на углеродистых и низколегированных сталях фосфор преимущественно находится в твердом растворе, а не в виде неметаллических включений. Это обусловлено низкой концентрацией фосфора в металле швов и относительно высокой его растворимостью в феррите. В связи с низкой растворимостью фосфора в аустените фосфорсодержащие включения значительно чаще встречаются в швах с аустенитной структурой. В этих включениях фосфор может находиться в виде фосфидов, фосфидных эвтектик и фосфатов.  

Представленные на рис. 24 данные по влиянию легирующих элементов на растворимость фосфора в а-железе показывают, что легирование железа, содержащего фосфор, может приводить к нескольким конкурирующим процессам. К ним относятся усиление зернограничной сегрегации фосфора при умеренном снижении его растворимости в железе, с одной стороны, и ослабление сегрегации из-за связывания растворенного фосфора при выделении фосфидов в результате очень сильного снижения растворимости фосфора с другой. В ряде работ показано И09, 241 ], что в случае низколегированных конструкционных сталей весьма эффективными добавками, связывающими охрупчивающие примеси в химические соединения и значительно ослабляющими склонность к отпускной хрупкости, являются редкоземельные элементы, в частности, лантан и церий.  

Судя по выделению фосфора, SiP не является низшим фосфидом кремния. Последние 0 2 г-ат фосфора выделяются только при низком давлении. Бильц предполагал, что это может быть также и результатом растворения фосфора в кремнии. Однако измерение растворимости фосфора в кремнии, проведенное Фуллером и Дитценбергером , показало, что при температуре 1250 таковая составляет всего около 1 3 вес.  

В соответствии с моделью неоднородного карбидообразования при отпуске закаленной легированной стали вследствие более быстрого распада пересыщенного твердого раствора на границах зерен концентрация карбидообразующих элементов в феррите вблизи границ падает быстрее, чем в феррите объема зерна, приближаясь к равновесной, и остается ниже средней концентрации этих элементов внутри зерна в течение времени, зависящего от состава стали и температуры отпуска. Предполагается, что в обедненных карбидообразующими элементами приграничных зонах понижается термодинамическая активность фосфора, поэтому фосфор диффундирует в эти зоны. Влияние некарбидообразующих элементов в рамках этой модели является косвенным. Никель, например, ускоряет падение растворимости фосфора с понижением температурь), что связывается с повышением его термодинамической активности, усиливающим, в свою очередь, влияние неоднородно-стей твердого раствора на распределение фосфора. Влияние других элементов может быть обусловлено изменением поверхностной энергии и избыточной энергии границ зерен, размера аустенитного зерна, сопротивления начальной пластической деформации, т.е. изменением фона, на котором развиваются основные (в рамках этой модели) процессы, ответственные за охрупчивание — неоднородное карбидообразование и перераспределение фосфора и его аналогов.  

Страницы:      1    2    3

Современный человек в повседневной жизни не может обойтись без химии. И часто случается так, что не находится времени глянуть какие продукты употребляются и используются в быту.

Аллергия, пониженный иммунитет и другие проблемы со здоровьем могут быть следствием интоксикации фосфатами. Не говоря уже о тяжелой экологической обстановке окружающей среды.

Что такое фосфаты и откуда они берутся

Фосфаты - это неорганические химические соединения, которые образуются из фосфорной кислоты и металлов. Существует множество разновидностей фосфатов, а сфера их применения начинается пищевой промышленностью и заканчивается выплавкой металлов.

В быту человек встречается с фосфатами в пище, а также во время стирки или мытья посуды, то есть при контакте с бытовой химией. Чаще всего фосфаты представлены в виде трёх соединений - фосфата кальция (Ca3(PO4)2), ортофосфата калия (K3PO4) и фосфата натрия (Na3PO4).

Они могут находится в колбасе, сыре (добавляют для однородности), выпечке, тортах (разрыхлитель для теста), в прочих пищевых продуктах как консервант. В бытовую химию фосфаты добавляют в моющие средства, порошки, шампуни и пр. в качестве смягчителя воды. При чём в стиральных порошках фосфатов значительно больше, чем указывают на упаковке.

Фосфаты в естественном виде присутствуют в таких продуктах как мясо и орехи, но, в основном, выводятся организмом. Но с искусственными фосфатными солями всё по-другому.

Каков вред от фосфатов?

Влияние на здоровье человека

Давно известно, что эти вещества представляют серьёзную опасность для здоровья людей, особенно тех, кто страдает почечной недостаточностью. Долгое время врачи предупреждали об опасности слишком большого количества фосфатов в крови. Несколько исследований уже показали, что люди с заболеванием почек подвергаются повышенному риску смерти. Поскольку повреждённые почки больше не могут выводить определенные вещества, такие как, например, фосфаты. Они накапливается в крови и залегают в сосудах и мягких тканях.

Слишком большой уровень фосфатов в крови увеличивает риск смерти.

И тем не менее, риску подвергаются даже здоровые люди. Несколько исследований это доказывают. У здоровых людей фосфаты, что находятся в крови, выводятся через почки. Но чем больше фосфатов человек употребляет, тем быстрее почка перенапрягается и теряет эту способность. В результате наблюдается повышенный уровень фосфатов в крови, повреждения сосудов (их внутренние стенки изменяются и кальцифицируются), а также сердца. При этом риск инсульта или сердечного приступа в значительной мере возрастает.

Сердечно-сосудистая система - не единственная кто страдает от соединений фосфора. Кости также подвергаются риску по той простой причине, что фосфаты обеспечивают высвобождение и вымывание кальция из них. В результате кости теряют минералы и становятся хрупкими, что может привести к остеопорозу, а также увеличению риска переломов при значительных нагрузках.

Согласно исследованиям, взрослый человек может употреблять максимум 700 мг фосфатов в сутки. К сожалению, даже если вы и захотите уменьшить их употребление, - это будет почти невозможно. Например, замороженная пицца часто содержит в три раза больше рекомендуемой нормы фосфатов. Фастфуды и сладкие безалкогольные напитки буквально наводняют организм искусственными фосфатами.

Опасность в том, что искусственные фосфаты свободно растворяются и поглощаются организмом почти на 100%. Автоматический барьер для устранения избытка, который служит для регулирования натуральных фосфатов, здесь не работает. Тело поглощает гораздо больше, чем может справиться.

Также фосфаты могут попадать в тело человека через кожу, нарушая кислотно-щелочной баланс в клетках. Следствие - дерматологические болезни и ускоренное старение кожи. Кроме того, фосфаты таким образом влияют и на кровь человека - изменяют содержание гемоглобина, плотность сыворотки и количество белка. Что в свою очередь приводит к нарушению работы печени, мышц, тяжелым отравлениям, нарушению обмена веществ, обострению хронических болезней.

Влияние на экологию и природу

Садоводы знают, что фосфаты необходимы растениям в качестве удобрений. Так же само фосфаты действуют и в водоёмах, ускоряя рост водорослей. В результате бурного роста, водная растительность поглощает значительное количество растворённого в воде кислорода. По этой причине может наблюдаться гибель и превращение озёр в болота, мор рыбы, умирают животные и т.п. В конечном итоге, водоёмы полностью зарастают.

Попадают фосфаты в водоёмы с полей, а также через сточные воды, которые проходят обработку на очистных сооружениях активным мулом. Активный мул - это микроорганизмы, и они не справляются с огромным потоком фосфатов из городов и погибают. В следствие чего, фосфатные соединения не полностью удаляются из сточных вод и попадают в водоёмы.

От «нашествия водорослей» и экологической катастрофы страны и водоёмы средней климатической полосы спасает лишь недостаточное количество тепла и света, что поступает в холодный период года.

Как уменьшить употребление и вред от фосфатов для себя и окружающей среды

Фосфорные соединения не всегда упоминаются на упаковках товаров в открытом виде. Производителю попросту это не совсем выгодно, поэтому зачастую их скрывают за номерами с индексом «Е»:

. E338 (фосфорная кислота);

. Е339 (фосфат натрия);

. E340 (фосфат калия);

. E341 (фосфат кальция);

. Е343 (фосфат магния);

. E450 (дифосфат);

. E451 (трифосфат);

. E452 (полифосфат);

. Е442 (аммонийные соли фосфатидиловой кислоты);

. Е541 (кислый алюмофосфат натрия);

. Е1410 (монокрахмал-фосфат);

. Е1412 (дикрахмал фосфат);

. Е1413 (фосфатированный дикрахмал фосфат);

. Е1414 (ацетилированный крахмал);

. Е1442 (гидроксипропилдикрахмалфосфат).

Также они скрываются за терминами «регулятор кислотности». На колбасных или сырных продуктах имеются только маленькие знаки со словами «содержит фосфат». И если они используются в производстве продуктов питания только как вспомогательные средства или являются частью ингредиента - как в сыре замороженной пиццы, - они могут не упоминаться в конечном продукте. Поэтому потребителю сложно идентифицировать их как таковые. Таким образом, искусственные фосфаты и вредят здоровью человека.

Откажитесь от готовых к употреблению продуктов и фастфуда. Обращайте внимание на указанные выше номера на этикетках и держитесь подальше от таких товаров.

Что касается бытовой химии, используйте экологические «мягкие», щадящие, бесфосфатные моющие средства и порошки с пониженным содержанием поверхностно-активных веществ (ПАВ).

Фосфаты и их влияние на человека

В такой продукции значительно уменьшена концентрация ПАВ, фосфатов вообще нет, а моющие свойства не уступают химии с фосфатами. Единственным недостатком является цена. Но негативное влияние на организм почти отсутствует.

Уменьшить эвтрофикацию (зарастание, заболачивание) водоёмов можно использованием именно бесфосфатных моющих средств и порошков, а также правильной агротехники на полях и огородах.

Ситуация с фосфатами на постсоветском пространстве близится к критической. Без применения мер на уровне правительств, принятия соответствующих норм и законов, она будет значительно усугубляться. Но человек - существо с правом выбора, и он сам способен выбирать как и в какой среде ему жить. Будьте внимательны, проверяйте состав продуктов, которые используете и употребляете. Позаботьтесь о себе, окружающей среде и будущем своих детей.

Под общим фосфором понимают сумму минерального и органического фосфора. Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до 200 мкг/дм 3 . Фосфор - важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. При поступлении избытка соединений фосфора происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий). Один из вероятных аспектов процесса эвтрофикации - рост сине-зеленых водорослей (цианобактерий), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях - при попадании большой массы водорослей внутрь организма - может развиваться паралич.

Основной формой неорганического фосфора при значениях pH водоема больше 6,5 является ион HPO 4 2- (около 90%). В кислых водах неорганический фосфор присутствует преимущественно в видеH 2 PO 4- . Концентрация фосфатов в природных водах обычно очень мала - сотые, редко десятые доли миллиграммов фосфора в 1 дм 3 , в загрязненных водах она может достигать нескольких миллиграммов в 1 дм 3 . Подземные воды содержат обычно не более 100 мкг/дм 3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород.

Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора.

В методике оценки экологической ситуации, принятой Госкомэкологией РФ, рекомендован норматив содержания растворимых фосфатов в воде - 50 мкг/дм 3 . Полифосфаты можно описать следующими химическими формулами: Men(PO3)n, Men+2PnO3n+1, MenH2PnO3n+1. Полифосфаты малотоксичны. Токсичность полифосфатов объясняется их способностью к образованию комплексов с биологически важными ионами, особенно с кальцием. Установленное допустимое остаточное количество полифосфатов в воде хозяйственно-питьевого назначения составляет 3,5 мг/дм 3 (лимитирующий показатель вредности - органолептический).

2. Определение величины экологической опасности до введения в строй очистных сооружений.

Система очистки сточных вод молокозавода, до введения в строй устройства для осуществления глубокой очистки сточных вод, включает в себя механическую очистку на барабанной решетке. Решетка работает автоматически и обеспечивает надежную защиту от засорения насосов, вентилей, арматуры. Далее сточные воды поступают в смеситель-усреднитель. После усреднителя вода направляется на флотатор, где неэмульгированные капельки масел и частички жиров отделяются и направляются на утилизацию.

Количественный и качественный состав сточных вод молокозавода, сбрасываемых в систему канализации г. Иваново, представлен в таблице №3. Ежедневно на предприятии образуется около 1500 м 3 сточных вод

(≈62,5 м 3 /ч).

Таблица 3

Количественный и качественный состав сточных вод молокозавода.

Потенциальная опасность без введения в строй очистных сооружений определяется как произведение вероятности неблагоприятного события на ущерб, причиненный окружающей среде: ПО=R мо, руб, R мо – математическое ожидание риска, R мо = Р×У, где: Р – вероятность возникновения опасного для ОС события при аварийной ситуации, У– размер вреда от возникновения опасного для ОС события. Таким образом, Р~1. В соответствии с «Методикой исчисления размера вреда, причиненного водным объектам вследствие нарушения водного законодательства» приказ Минприроды России от 13 апреля 2009 г. N 87.

Исчисление размера вреда, причиненного водному объекту сбросом вредных (загрязняющих) веществ в составе сточных вод и (или) дренажных (в том числе шахтных, рудничных) вод, производится по формуле:

У i = К вг × К в × К ин × × М i × К из,

У вв =1.15×1.41×1.93×30×0.105×1= 9.858 тыс. руб.

У БПК =1.15×1.41×1.93×5×1.395×1= 21.832 тыс. руб.

У азот =1.15×1.41×1.93×280×0.089×5= 389.998 тыс. руб.

У Р =1.15×1.41×1.93×280×0.0087×2= 15.249 тыс. руб.

У = 9.858+21.832+389.998+15.249=436.937 тыс. руб.

где: У - размер вреда, тыс. руб.;

К вг - коэффициент, учитывающий природно-климатические условия в зависимости от времени года, определяется в соответствии с таблицей 1 приложения 1 к настоящей Методике, К вг =1.15;

К в - коэффициент, учитывающий экологические факторы (состояние водных объектов), определяется в соответствии с таблицей 2 приложения 1 к настоящей Методике, К в =1.41;

К ин - коэффициент индексации, учитывающий инфляционную составляющую экономического развития, К ин =1,93;

Н i - таксы для исчисления размера вреда от сброса i-го вредного (загрязняющего) вещества в водные объекты определяются в соответствии с таблицей 3 приложения 1 к настоящей Методике:

Н вв = 30 тыс. руб./т; Н БПК =5 тыс. руб./т;

Н азот = 280 тыс. руб./т; Н Р = 280 тыс. руб./т;

М i - масса сброшенного i-го вредного (загрязняющего) вещества определяется по каждому загрязняющему веществу в соответствии с главой IV настоящей Методики, т;

М i = Q × (C фi – C дi) × Т × 10 –6 ,

М вв = 62.5×(350-280)×24×10 –6 =0.105 т,

М БПК = 62.5×(1200-270)×24×10 –6 =1.395 т,

М азот = 62.5×(60-0.39)×24×10 –6 =0.089 т,

М Р = 62.5×(6-0.2)×24×10 –6 =0.0087 т.

i - загрязняющее вещество, по которому исчисляется размер вреда;

Q - расход сточных вод и (или) загрязненных дренажных (в том числе шахтных, рудничных) вод, с превышением содержания i-го вредного (загрязняющего) вещества определяется по приборам учета, а при их отсутствии - расчетным путем в соответствии с документами, на основании которых возникает право пользования водными объектами, и иными способами и методами расчета объема сброса сточных вод и их характеристик, м 3 /час;

C фi - средняя фактическая за период сброса концентрация i-го вредного (загрязняющего) вещества в сточных водах и (или) загрязненных дренажных (в том числе шахтных, рудничных) водах, определяемая по результатам анализов аккредитованной лаборатории как средняя арифметическая из общего количества результатов анализов (не менее 3-х) за период времени Т, мг/дм 3 ;

Cдi - допустимая концентрация i-го вредного (загрязняющего) вещества в пределах норматива допустимого (предельно допустимого) сброса или лимита сброса при его наличии на период проведения мероприятий по снижению сбросов вредных (загрязняющих) веществ в водные объекты, мг/дм 3 ;

Т - продолжительность сброса сточных вод и загрязненных дренажных (в том числе шахтных, рудничных) вод с повышенным содержанием вредных (загрязняющих) веществ, определяемая с момента обнаружения сброса и до его прекращения, час;

10 –6 - коэффициент перевода массы вредного (загрязняющего) вещества в т.

К из - коэффициент, учитывающий интенсивность негативного воздействия вредных (загрязняющих) веществ на водный объект, определяется в соответствии с пунктом 11.2. настоящей Методики:

К из вв =1, К из БПК =1, К из азот =5, К из Р =2.

ПО=R мо =Р×У=1*436.937 = 436.937 тыс. руб., т.к. вероятность возникновения аварии равна – 1, У=436.937 тыс. руб./сут.

Сточные воды являются сложной неоднородной системой, содержащей загрязнения различного характера. Вещества представлены в растворимом и нерастворимом, органическом и неорганическом виде. Концентрация соединений бывает различной, в частности, органические загрязнения в бытовых стоках представлены в виде белков, углеводов, жиров и продуктов биологической переработки. Кроме того стоки содержат довольно крупные примеси – отходы растительного происхождения, такие как бумага, тряпки, волосы и синтетические вещества. Неорганические соединения представлены ионами фосфатов, в состав может входить азот, кальций, магний, калий, сера и другие соединения.

В состав бытовых стоков всегда входят биологические вещества в виде плесневых грибков, яйца глист, бактерий, вирусов. Именно из-за присутствия загрязняющих веществ, сточные воды считаются опасными для человека, растений и животных в эпидемиологическом плане.

Для определения состава и количества взвешенных частиц в водах слива, необходимо провести множество анализов химического и санитарно-бактериологического типа. Результаты покажут уровень концентрации загрязняющих элементов в воде, а значит, самый оптимальный вариант очистки. Но проведение полного анализа не всегда возможно, поэтому проще воспользоваться упрощенным вариантом, дающим неполную характеристику воды, однако предоставляющим сведения о прозрачности, наличии взвешенных частиц, концентрации растворенного кислорода и потребности в нем.

Анализ проводится по следующим показателям:

  1. Температура . Показатель указывает на скорость образования осадка из взвесей и интенсивность процессов биологического вида, влияющих на оперативность и качество очистки.
  2. Цветность, окраска . Бытовые сточные воды нечасто имеют выраженный окрас, но если есть подобный фактор, качество стоков весьма плохое и требует усиления работы очистных сооружений или полной замены способа очистки.
  3. Запахи . Как правило, высокая концентрация продуктов распада органики, наличие в стоках фосфатов и входящий в состав азот, калий, сера, придают потокам резкий неприятный запах.
  4. Прозрачность . Это показатель уровня содержащихся загрязнений, определяющийся методом шрифта. Для бытовых вод стандарт составляет 1-5 см, для потоков, прошедших методы очистки биологическими соединениями – от 15 см.
  5. Уровень pH используется для измерения реакции среды. Допустимые показатели 6,5 – 8,5.
  6. Осадок . Измеряется именно плотный осадок, определяемый по фильтрату пробы. По стандартам СНиП допускается не более 10г/л.
  7. Взвешенные вещества составляют в городских водах не более 100-500 сг/л с зольностью до 35%.

Отдельно исследуется фосфор и азот, а также все их формы. Берется 4 формы азота: общий, аммонийный, нитритный и нитратный. В сточных водах чаще встречается общий и аммонийный тип, нитритный и нитратный лишь, если применялись методы очистки посредством аэротенков и биофильтратов. Установление концентрации азота и его форм – важная составляющая анализа, так как азот необходим для питания бактерий как и фосфор.


Как правило, азот в бытовых сточных водах содержится в полном объеме, а вот фосфатов маловато, поэтому зачастую при недостатке фосфаты заменяются известью (хлористым аммонием).

  • Сульфаты и хлориды не подвержены изменениям при очистке, удаление взвешенных веществ возможно только при полной переработке стоков, однако содержание веществ в малой концентрации не влияет на биохимические процессы, поэтому допустимые параметры остаются в пределах 100 мг/л.
  • Токсичные элементы – это тоже взвешенные вещества, однако даже малая концентрация соединений оказывает отрицательное влияние на жизнь и деятельность организмов. Именно поэтому взвешенные вещества токсичного типа относятся к виду особо загрязняющих и выделены в отдельную группу. Сюда относятся: сульфиды, ртуть, кадмий, свинец и многие другие соединения.
  • Синтетические поверхностно-активные взвешенные вещества – одна из самых серьезных угроз. Содержание элементов в сточных водах негативно отражается на состоянии водоемов, а также снижает функциональность очистных сооружений.

Различается всего 4 группы СПАВ:

  1. Анионоактивные – на долю соединений приходится ¾ мирового производства СПАВ;
  2. Неоногенные – занимают второе место по концентрации в городских сточных водах;
  3. Катионоактивные – замедляют процессы очистки, происходящие в отстойниках;
  4. Амфотерные – встречаются редко, но значительно снижают эффективность удаления отходов из воды.

Растворенный кислород содержится в сливных водах не более 1 мг/л, что предельно мало для нормальной работы микроорганизмов, которые отвечают за удаление взвешенных частиц из стоков. Поддержание жизнедеятельности бактерий требует от 2 мг/л, поэтому важен контроль за содержанием растворенного кислорода в бытовых сливных водах, особенно за теми, что сбрасываются в искусственные или естественные водоемы – несоблюдение допустимых стандартов содержания растворенного кислорода приведет к появлению загрязняющих частиц в озерах и нарушению естественного природного баланса. А это уже означает вымирание природных ресурсов.

Что касается биологических соединений, входящих в состав вод слива, то процесс очистки справляется с ними на 90% и выше. Особенно это касается яиц гельминтов, встречающихся в потоках в большом разнообразии. Концентрация яиц достигает до 92% от общего состава загрязняющих веществ, поэтому именно удаление элементов является одной из наиболее важных задач.

Варианты очистки сточных бытовых и промышленных вод


Самым практичным и популярным считается способ, при котором удаление производится биологическим путем. Функционально процесс представляет собой переработку активными биологическими компонентами загрязняющих частиц, попавших в сточные бытовые воды. Различается удаление двумя вариантами:

  1. Анаэробный – процесс разрушения веществ без доступа воздуха/кислорода;
  2. Аэробный – разрушение и удаление взвешенных частиц полезными микроорганизмами с поступлением кислорода.

Кроме того, создаются искусственно условия для лучшей переработки органики, но иногда колоний бактерий достаточно, чтобы очистка бытовых сточных потоков проходила в естественных условиях и важно лишь следить за поступлением достаточного количества органики.

Искусственно создаваемые условия называются полями фильтрации. Это специальные участки с песчаной или суглинистой почвой, подготовленные для протекания естественной биологической очистки загрязнений в сливных водах посредством фильтрации через почвенные слои. Таким образом достигаются допустимые нормы содержания веществ. Процесс протекает с помощью аэробных и анаэробных бактерий, содержащихся в грунте, поэтому удаление загрязняющих частиц считается более полным. Однако метод не всегда может устранить фосфаты и азот в очищаемых водах, к тому же считается неудобным из-за больших площадей, сезонного использования и неприятного запаха.


Применение септиков и аэрационных биологических очистных сооружений также способно справиться с очисткой стоков. Преимущества искусственных очистных в возможности интенсификации процессов очистки, дооснащение оборудованием типа биофильтров, а также способностью использовать конструкции в течение всего года. Огромное значение имеет возможность очистки без неприятного запаха. При поддержании благоприятного климата и поступлении достаточного количества органики, процесс очистки происходит беспрерывно, причем производится удаление самых серьезных загрязняющих соединений, концентрация которых превышена. Но важно помнить, что общий состав поступающих стоков не должен содержать множество элементов, таких как:

  • Химические кислоты;
  • Бензины и растворители;
  • Биологически активные вещества;
  • Антибиотики;
  • Соединения порошков стиральных, моющих;
  • Абразивы.

При всех возможностях удаления, очистка в септиках бытового назначения не справляется с соединениями фосфатов, нитратов и азот тоже не нейтрализует, однако значительно сниженная концентрация позволяет накапливать очищенные потоки в резервуарах, откуда брать воду для полива или технических нужд.

Взвешенные вещества, входящие в состав сливных потоков, удаляются посредством биологического способа очистки, то есть посредством культивирования в водах микроорганизмов, разрушающих соединения загрязняющих частиц. Органика бывает как растительного, так и животного происхождения, причем основным компонентом растительного мусора является углерод, а животного – азот. Именно поэтому общий состав полезных бактерий для очистки сточных потоков должен содержать все виды микроорганизмов для того, чтобы успешно справляться с удалением загрязнений.

Для того чтобы удалить в сточных водах агрессивные химические соединения, фосфаты, токсические вещества, входящие в состав промышленных стоков, применяются централизованные системы очистки, где показано использование сильных реактивов и химикатов. А для того, чтобы справиться с загрязнениями в бытовых водах, откуда берется вода для полива, мытья машины и прочих хозяйственных нужд, достаточно качественных септиков.