Изобарный процесс и его график. Изотермический процесс


Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 13958

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.

На этом уроке мы продолжим изучать связь между тремя макроскопическими параметрами газа, а конкретнее - их взаимосвязь в газовых процессах, протекающих при постоянном значении одного из этих трёх параметров, или изопроцессах: изотермических, изохорных и изобарных.

Рассмотрим следующий изопроцесс - изобарный процесс.

Определение. Изобарный (или изобарический ) процесс - процесс перехода идеального газа из одного состояния в другое при постоянном значении давления. Впервые такой процесс рассмотрел французский учённый Жозеф-Луи Гей-Люссак (рис. 4), поэтому закон носит его имя. Запишем этот закон

А теперь учитывая: и

Закон Гей-Люссака

Из этого закона очевидно следует прямо пропорциональная связь между температурой и объёмом: при увеличении температуры наблюдается увеличение объёма, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и V, имеет следующий вид и называется изобарой (рис. 3):

Рис. 3. Графики изобарных процессов в координатах V-T ()

Следует обратить внимание на то, что, поскольку мы работаем в системе СИ, то есть с абсолютной шкалой температур, на графике присутствует область, близкая к абсолютному нулю температур, в которой данный закон не выполняется. Поэтому прямую в области, близкой к нулю, следует изображать пунктирной линией.

Рис. 4. Жозеф Луи Гей-Люссак ()

Рассмотрим, наконец, третий изопроцесс.

Определение. Изохорный (или изохорический ) процесс - процесс перехода идеального газа из одного состояния в другое при постоянном значении объёма. Процесс рассмотрен впервые французом Жаком Шарлем (рис. 6), поэтому закон носит его имя. Запишем закон Шарля:

Снова запишем обычное уравнение состояния:

А теперь учитывая: и

Получаем: для любых различных состояний газа, или же просто:

Закон Шарля

Из этого закона очевидно следует прямо пропорциональная связь между температурой и давлением: при увеличении температуры наблюдается увеличение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и P, имеет следующий вид и называется изохорой (рис. 5):

Рис. 5. Графики изохорных процессов в координатах V-T

В районе абсолютного нуля для графиков изохорного процесса также существует лишь условная зависимость, поэтому прямую также следует доводить до начала координат пунктиром.

Рис. 6. Жак Шарль ()

Стоит обратить внимание, что именно такая зависимость температуры от давления и объёма при изохорных и изобарных процессах соответственно определяет эффективность и точность измерения температуры с помощью газовых термометров.

Интересен также тот факт, что исторически первыми были открыты именно рассматриваемые нами изопроцессы, которые, как мы показали, являются частными случаями уравнения состояния, а уже потом уравнения Клапейрона и Менделеева-Клапейрона. Хронологически сначала были исследованы процессы, протекающие при постоянной температуре, затем при постоянном объёме а последними - изобарические процессы.

Теперь для сравнения всех изопроцессов мы собрали их в одну таблицу (см рис. 7). Обратите внимание, что графики изопроцессов в координатах, содержащих неизменяющийся параметр, собственно говоря, и выглядят как зависимость константы от какой-либо переменной.

Рис. 7.

На следующем уроке мы рассмотрим свойства такого специфического газа, как насыщенный пар, подробно рассмотрим процесс кипения.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Slideshare.net ().
  2. E-science.ru ().
  3. Mathus.ru ().

Домашнее задание

  1. Стр. 70: № 514-518. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Какова зависимость между температурой и плотностью идеального газа при изобарном процессе?
  3. При надувании щёк и объём, и давление во рту возростают пр неизменной температуре. Противоречит ли это закону Бойля-Мариотта? Почему?
  4. *Как будет выглядеть график данного процесса в координатах P-V?

Основными процессами в термодинамике являются:

  • изохорный , протекающий при постоянном объеме;
  • изобарный , протекающий при постоянном давлении;
  • изотермический , происходящий при постоянной температуре;
  • адиабатный , при котором теплообмен с окружающей средой отсутствует;
  • политропный , удовлетворяющий уравнению pv n = const.

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в p v иT s координатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Изохорный процесс в p , v — , T , s — и i , s -координатах (диаграммах)

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT ) следует:

p/T = R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 = T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q = c v (T 2 T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu = q , а значит изменение внутренней энергии можно определить по формуле:

Δu = c v (T 2 — T 1) .

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарный процесс в p , v — , T , s — и i , s -координатах (диаграммах)

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v/T = R/p = const

v 2 /v 1 = T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l = p (v 2 v 1 ).

Т. к. pv 1 = RT 1 и pv 2 = RT 2 , то

l = R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q = c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

Изотермический процесс в p , v — , T , s — и i , s -координатах (диаграммах)

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 /p 1 = v 1 /v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l = RT ln (v 2 – v 1 ) = RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q = l .

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs = R ln(p 1 /p 2 ) = R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатный процесс в p , v — , T , s — и i , s -координатах (диаграммах)

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du + p dv = 0

Δu + l = 0,

следовательно

Δu = —l .

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq = c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v = k

и уравнение кривой адиабатного процесса (адиабаты) в p , v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = — Δu = c v (T 1 T 2 );

i 1 i 2 = c p (T 1 T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . В T , s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом .

Политропный процесс

Политропным называется процесс, который описывается уравнением:

pv n = const.

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p , v и T в любых двух точках на политропе:

p 2 /p 1 = (v 1 /v 2 ) n ; T 2 /T 1 = (v 1 /v 2 ) n-1 ; T 2 /T 1 = (p 2 /p 1 ) (n-1)/n .

Работа расширения газа в политропном процессе равна:

В случае идеального газа эту формулу можно преобразовать:

Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:

q = (u 2 – u 1 ) + l .

Поскольку

представляет собой теплоемкость идеального газа в политропном процессе.

При c v , k и n = const c n = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p , v координатах в зависимости от показателя политропа n .

pv 0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p 0 v = const, p 1/∞ v = const, pv ∞ = const – изохора;

pv k = const (n = k ) – адиабата.

n > 0 – гиперболические кривые,

n < 0 – параболы.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. - М. :КНОРУС, 2011. - 352 с.

Изобарный процесс является разновидностью изопроцесса, который является термодинамическим. При нем масса вещества и один из его параметров (давление, температура, объем) остаются неизменными. Для изобарного процесса постоянной величиной является давление.

Изобарный процесс и закон Гей-Люссака

В 1802 году благодаря проведению серии экспериментов французский ученый Жозеф Луи Гей-Люссак вывел закономерность, что при постоянном давлении отношение объема газа к температуре самого вещества заданной массы будет величиной константа. Другими словами, объем газа прямо пропорционален его температуре при постоянном давлении. В русской литературе закон Гей-Люссака еще называется законом объемов, а в английской - законом Шарля.

Формула, которую вывел французский физик под изобарный процесс, подходит абсолютно для любого газа, а также для паров жидкостей, когда пройдена

Изобара

Для изображения таких процессов в графическом варианте используется изобара, которая представляет собой прямую линию в двухмерной системе координат. Существуют две оси, одна из которых - объем газа, а вторая обозначает давление. При увеличении одного из показателей (температуры или объема) пропорционально увеличивается и второй показатель, что обеспечивает наличие прямой линии в качестве графика.

Примером изобарного процесса в ежедневной жизни является нагревание воды в чайнике на плите, когда атмосферное давление является неизменным.

Изобара может выходить из точки в начале осей координат.

Работа при изобарном процессе газа

Благодаря тому, что частицы газа находятся в постоянном движении, газ соответственно постоянно оказывает давление на стенку сосуда, в котором он заключен. При увеличении температуры газа движение частиц становится быстрее, а, следовательно, сильнее становится сила, с которой частицы начинают бомбардировать стенки сосуда. Если температура начинает понижаться, в таком случае происходит обратный процесс. Если же одна из стенок сосуда является подвижной, то при соответствующем должном увеличении температуры, - когда на стенку сосуда газа изнутри становится выше, чем сила сопротивления, - стенка начинает двигаться.

В школе детям объясняют это явление на примере нагревания на огне стеклянной колбы, наполненной водой и с закрытой пробкой, когда последняя при повышении температуры вылетает наружу. При этом преподаватель всегда поясняет, что давление атмосферы неизменно.

В механике рассматривается движение тела относительно пространства, а термодинамика изучает движение частей какого-либо тела относительно друг друга, при этом скорость тела останется равной нулю. Когда мы говорим о то, прежде всего, мы имеем ввиду в то время как в механической мы имеем дело с изменением Работа газа при изобарном процессе можно определить формулой, в которой давление умножается на разницу между объемами: начальным и конечным. На бумаге формула будет выглядеть следующим образом: А=рХ(О1-О2), где А - совершаемая работа, р - давление - постоянная величин, когда речь идет про изобарный процесс, О1 - конечный объем, О2 - начальный объем. Следовательно, когда идет сжатие газа, то работа у нас будет отрицательной величиной.

Благодаря открытым Гей-Люссаком в начале 19 века свойствам газов мы можем передвигаться на автомобилях, где в двигатель заложены изобарные принципы работы, наслаждаться прохладой, которую в жаркий день нам дарят современные кондиционеры. Кроме того, изучение изобарических процессов происходит и поныне, что производить работы по усовершенствованию оборудования, используемого в энергетике.

Изобарным процессом называется процесс, протекающий при постоянном давлении.

  • 2) Рис. 10
  • 3) pV 1 = RT 1 ; pV 2 = RT 2 .

Разделив почленно эти выражения, получим:

4) Изменение внутренней энергии и энтальпии

ДU = U 2 - U 1 = C v (T 2 - T 1);

Дi = i 2 - i 1 = C p (T 2 - T 1).

5) Изменение энтропии и графическое изображение процесса в системе T, S координат, рис. 10

6) Работа изменения объема

7) Теплота процесса

дq = C pm dT; q = C pm (T 2 - T 1)

8) Аналитическое выражение I-го закона термодинамики.

Все подведенное к рабочему телу тепло расходуется на изменение внутренней энергии и работу изменения объема

дq = dU + дl; q = ДU + l.

Из рассмотрения выражения I закона термодинамики получим:

C p (T 2 - T 1) = C v (T 2 - T 1) + R (T 2 - T 1)

C p = C v + R; C p - C v = R.

Приведенное выражение называют уравнением Майера. Поясним уравнение Майера.

В изохорном процессе, согласно I закону термодинамики, тепло, подведенное к рабочему тела, расходуется только на изменение внутренней энергии, а в изобарном - на изменение внутренней энергии и работу, поэтому изобарная теплоемкость больше изохорной на величину работы. Напомним, что газовая постоянная представляет собой работу 1 кг рабочего тела в изобарном процессе при изменении температуры на 1 К


На каком рисунке изображен график изобарного процесса для идеального газа в координатах V-T?

Масса газа не изменяется.

Рассмотрим вначале изобарный процесс. Пусть в цилиндре с подвижным поршнем находится газ при температуре T

Будем медленно нагревать газ до температуры T2

Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Дl. Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = p?S тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

A = F ? Дl = p ? S ? Дl = p ? ДV,

где ДV -- изменение объема газа.

Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Газ выполняет работу только в процессе изменения своего объема, (рис. 12).

При расширении (ДV > 0) газа совершается положительная работа (А> 0); при сжатии (ДV < 0) газа совершается отрицательная работа(А < 0).Если рассматривать работу внешних сил A" (А" = -А), то при расширении (ДV > 0) газа А" < 0); при сжатии (ДV < 0) А" > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

Следовательно, при изобарном процессе

Если н = 1 моль, то при ДФ = 1 К получим, что R численно равна A.

Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

p ? = н? R ? , p ? = н? R ? ,V1T1V2

p ? (?) = н? R ? (?).V2V1

A = н? R ? ДT.T2T1T2

Вводится понятие «работа газа», рассматриваются особенности работы газа при изохорном, изобарном, изотермическом и адиабатном процессах.

Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). Например, если газ подвергается сжатию в цилиндре под поршнем, то внешние силы совершают над газом некоторую положительную работу A". В то же время силы давления, действующие со стороны газа на поршень, совершают работу A = -A". Если объем газа изменился на малую величину ДV, то газ совершает работу

где p - давление газа,

S - площадь поршня,

Дx - его перемещение.

При расширении работа, совершаемая газом, положительна, при сжатии - отрицательна. В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

или в пределе при ДVi > 0:

В изохорном процессе (V = const) газ работы не совершает, A = 0.

В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением:

A = p (V2- V1) = pДV

В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ДU = 0.

Первый закон термодинамики для изобарного процесса дает:

Q = U (T2) - U (T1) + p (V1) = p ДV

2 - V1) = ДU + p ДV

При изобарном расширении Q > 0 - тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 - тепло отдается внешним телам. В этом случае A < 0.

Температура газа при изобарном сжатии уменьшается, T2 < T; внутренняя энергия убывает, ДU < 0.1

3. В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ДU = 0.

Первый закон термодинамики для изотермического процесса выражается соотношением Q = A.

Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над зом, превращается в тепло, которое передается окружающим телам.

Процессы изменения состояния при постоянном давлении (dp = 0) широко распространены в технологических и энергетических установках. Например, нагревание газа в теплообменных аппаратах обычно происходит по изобаре. В изобарном процессе с = cp и, как следует из выражения

Для изобарного процесса из равенств dq = du + pdх и R = pdх/dT находим dq = du+RdT, следовательно, подведенная к газу теплота затрачивается на изменение внутренней энергии du и на работу против внешних сил RdT.

Определим количество теплоты, подведенной к газу в изобарном процессе. Дифференцируя выражение i = u+pх, получим

di = du + pdх + хdp. (1)

Для изобарного процесса dp = 0, и последнее уравнение принимает вид

di = du + pdх. (2)

Сравнивая выражения dq = du + pdх и (2), находим, что подведенное в изобарном процессе количество теплоты dq равно изменению энтальпии газа di.

Из уравнения Клапейрона pх = RT при р = const может быть получено выражение х/T = const, которое показывает, что при изобарном нагревании идеального газа удельный объем х воз-растает пропорционально абсолютной температуре Т (закон Гей-Люссака).

Изотермический процесс.

После преобразования выражения

и подстановки значения теплоемкости изотермического процесса с = ? находим, что в изотермическом процессе n=1.

Следовательно, уравнением изотермы является выражение pх = const

Из этого уравнения следует, что при подводе теплоты в изотермическом процессе объем газа должен увеличиться во столько же раз, во сколько раз уменьшилось давление (закон Бойля-Мариотта).

Согласно выражению du = cхdT, в изотермическом процессе du = 0 и и вся теплота затрачивается только на работу расширения: dq = pdх.