Сила гравитационного притяжения между двумя шарами формула. Закон и сила всемирного тяготения


На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами - физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы - мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот - более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с 2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с 2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых "Началах натуральной философии". Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Онираспространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m 1 и m 2 , находящимися на расстоянии r, такова:

  • F=Gm 1 m 2 /r 2 ,
    где G — константа пропорциональности, гравитационная постоянная.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35"" за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43"". (Наблюдаемая прецессия равна действительно 570""/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43"".)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором - гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы - это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация - это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы - это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.

Класси́ческая тео́рия тяготе́ния Ньютона (Зако́н всемирного тяготе́ния Ньютона) - закон, описывающий гравитационное взаимодействие в рамках классической механики . Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила F {\displaystyle F} гравитационного притяжения между двумя материальными точками массы m 1 {\displaystyle m_{1}} и m 2 {\displaystyle m_{2}} , разделёнными расстоянием r {\displaystyle r} , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть:

F = G ⋅ m 1 ⋅ m 2 r 2 {\displaystyle F=G\cdot {m_{1}\cdot m_{2} \over r^{2}}}

Здесь G {\displaystyle G} - гравитационная постоянная , равная 6,67408(31)·10 −11 м³/(кг·с²) .

Энциклопедичный YouTube

    1 / 5

    ✪ Введение в закон всемирного тяготения Ньютона

    ✪ Закон Всемирного тяготения

    ✪ физика ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ 9 класс

    ✪ Про Исаака Ньютона (Краткая история)

    ✪ Урок 60. Закон всемирного тяготения. Гравитационная постоянная

    Субтитры

    Теперь немного узнаем о тяготении, или гравитации. Как вы знаете, тяготение, особенно в начальном или даже в довольно углубленном курсе физики - это такое понятие, которое можно вычислить и узнать основные параметры, которыми оно обусловлено, но на самом деле тяготение не вполне поддается пониманию. Пусть даже вы знакомы с общей теорией относительности - если вас спросят, что такое тяготение, вы можете ответить: это искривление пространства-времени и тому подобное. Однако все равно трудно получить интуитивное представление, по какой причине два объекта, только лишь потому, что у них есть так называемая масса, притягиваются друг к другу. По крайней мере, для меня это мистика. Отметив это, приступим к рассмотрению понятия о тяготении. Будем делать это, изучая закон всемирного тяготения Ньютона, справедливый для большинства ситуаций. Этот закон гласит: сила взаимного гравитационного притяжения F между двумя материальными точками, обладающими массами m₁ и m₂, равна произведению гравитационной постоянной G на массу первого объекта m₁ и второго объекта m₂, деленному на квадрат расстояния d между ними. Это довольно несложная формула. Попробуем преобразовать ее и посмотрим, нельзя ли получить какие-то хорошо знакомые нам результаты. Используем эту формулу для расчета ускорения свободного падения вблизи поверхности Земли. Давайте нарисуем сперва Землю. Просто чтобы понимать, о чем мы с вами говорим. Это наша Земля. Допустим, нам надо вычислить гравитационное ускорение, действующее на Сэла, то есть на меня. Вот он я. Попытаемся применить это уравнение для расчета величины ускорения моего падения к центру Земли, или к центру масс Земли. Величина, обозначенная заглавной буквой G - это универсальная гравитационная постоянная. Еще раз: G - это универсальная гравитационная постоянная. Хотя, насколько я знаю, хоть я и не эксперт в этом вопросе, мне кажется, ее значение может меняться, то есть это не настоящая постоянная, и я предполагаю, что при разных измерениях ее величина различается. Но для наших потребностей, а также в большинстве курсов физики, это постоянная, константа, равная 6,67 * 10^(−11) кубических метров, деленных на килограмм на секунду в квадрате. Да, ее размерность выглядит странно, но вам достаточно понять, что это - условные единицы, необходимые, чтобы в результате умножения на массы объектов и деления на квадрат расстояния получить размерность силы - ньютон, или килограмм на метр, деленный на секунду в квадрате. Так что об этих единицах измерения не стоит беспокоиться: просто знайте, что нам придется работать с метрами, секундами и килограммами. Подставим это число в формулу для силы: 6,67 * 10^(−11). Поскольку нам нужно знать ускорение, действующее на Сэла, то m₁ равна массе Сэла, то есть меня. Не хотелось бы разоблачать в этом сюжете, сколько я вешу, так что оставим эту массу переменной, обозначив ms. Вторая масса в уравнении - это масса Земли. Выпишем ее значение, заглянув в Википедию. Итак, масса Земли равна 5,97 * 10^24 килограммов. Да, Земля помассивнее Сэла. Кстати, вес и масса - разные понятия. Итак, сила F равна произведению гравитационной постоянной G на массу ms, затем на массу Земли, и все это делим на квадрат расстояния. Вы можете возразить: какое же расстояние между Землей и тем, что на ней стоит? Ведь если предметы соприкасаются, расстояние равно нулю. Здесь важно понять: расстояние между двумя объектами в данной формуле - это расстояние между их центрами масс. В большинстве случаев центр масс человека расположен примерно в трех футах над поверхностью Земли, если человек не слишком высокий. Как бы там ни было, мой центр масс может находиться на высоте три фута над землей. А где центр масс Земли? Очевидно, в центре Земли. А радиус Земли у нас равен чему? 6371 километр, или примерно 6 миллионов метров. Поскольку высота моего центра масс составляет около одной миллионной расстояния до центра масс Земли, то в данном случае ею можно пренебречь. Тогда расстояние будет равно 6 и так далее, как и все остальные величины, нужно записать его в стандартном виде - 6,371 * 10^6, поскольку 6000 км - это 6 миллионов метров, а миллион - это 10^6. Пишем, округляя все дроби до второго знака после запятой, расстояние равно 6,37 * 10^6 метров. В формуле стоит квадрат расстояния, поэтому возведем все в квадрат. Попробуем теперь упростить. Вначале перемножим величины в числителе и вынесем вперед переменную ms. Тогда сила F равна массе Сэла на всю верхнюю часть, вычислим ее отдельно. Итак, 6,67 умножить на 5,97 равно 39,82. 39,82. Это произведение значащих частей, которое теперь следует умножить на 10 в нужной степени. 10^(−11) и 10^24 имеют одинаковое основание, поэтому для их перемножения достаточно сложить показатели степени. Сложив 24 и −11, получим 13, в итоге имеем 10^13. Найдем знаменатель. Он равен 6,37 в квадрате, умноженное на 10^6 также в квадрате. Как вы помните, если число, записанное в виде степени, возводится в другую степень, то показатели степеней перемножаются, а значит, 10^6 в квадрате равно 10 в степени 6, умноженной на 2, или 10^12. Далее вычислим квадрат числа 6,37 с помощью калькулятора и получим… Возводим 6,37 в квадрат. И это 40,58. 40,58. Осталось разделить 39,82 на 40,58. Делим 39,82 на 40,58, что равняется 0,981. Потом делим 10^13 на 10^12, что равно 10^1, или просто 10. А 0,981, умноженное на 10, это 9,81. После упрощения и несложных расчетов получили, что сила тяготения вблизи поверхности Земли, действующая на Сэла, равна массе Сэла, умноженной на 9,81. Что нам это дает? Можно ли теперь вычислить гравитационное ускорение? Известно, что сила равна произведению массы на ускорение, поэтому и сила тяготения просто равна произведению массы Сэла на гравитационное ускорение, которое принято обозначать строчной буквой g. Итак, с одной стороны, сила притяжения равна числу 9,81, умноженному на массу Сэла. С другой, она же равна массе Сэла на гравитационное ускорение. Разделив обе части равенства на массу Сэла, получим, что коэффициент 9,81 и есть гравитационное ускорение. И если бы мы включили в расчеты полную запись единиц размерности, то, сократив килограммы, увидели бы, что гравитационное ускорение измеряется в метрах, деленных на секунду в квадрате, как и любое ускорение. Также можно заметить, что полученное значение очень близко к тому, которое мы использовали при решении задач о движении брошенного тела: 9,8 метров в секунду в квадрате. Это впечатляет. Решим еще одну короткую задачу на тяготение, потому что у нас осталось пара минут. Предположим, у нас есть другая планета под названием Земля Малышка. Пусть радиус Малышки rS вдвое меньше радиуса Земли rE, и ее масса mS также равна половине массы Земли mE. Чему будет равна сила тяжести, действующая здесь на какой-либо объект, и насколько она меньше силы земного тяготения? Хотя, давайте оставим задачу на следующий раз, потом ее решу. До встречи. Subtitles by the Amara.org community

Свойства ньютоновского тяготения

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем . Это поле потенциально , и функция гравитационного потенциала для материальной точки с массой M {\displaystyle M} определяется формулой:

φ (r) = − G M r . {\displaystyle \varphi (r)=-G{\frac {M}{r}}.}

В общем случае, когда плотность вещества ρ {\displaystyle \rho } распределена произвольно, удовлетворяет уравнению Пуассона :

Δ φ = − 4 π G ρ (r) . {\displaystyle \Delta \varphi =-4\pi G\rho (r).}

Решение этого уравнения записывается в виде:

φ = − G ∫ ρ (r) d V r + C , {\displaystyle \varphi =-G\int {\frac {\rho (r)dV}{r}}+C,}

где r {\displaystyle r} - расстояние между элементом объёма d V {\displaystyle dV} и точкой, в которой определяется потенциал φ {\displaystyle \varphi } , C {\displaystyle C} - произвольная постоянная.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой m {\displaystyle m} , связана с потенциалом формулой:

F (r) = − m ∇ φ (r) . {\displaystyle F(r)=-m\nabla \varphi (r).}

Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера . В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам . Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений .

Точность закона всемирного тяготения Ньютона

Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности . Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали , что приращение δ {\displaystyle \delta } в выражении для зависимости ньютоновского потенциала r − (1 + δ) {\displaystyle r^{-(1+\delta)}} на расстояниях нескольких метров находится в пределах (2 , 1 ± 6 , 2) ∗ 10 − 3 {\displaystyle (2,1\pm 6,2)*10^{-3}} . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения .

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено .

Прецизионные лазерные дальнометрические наблюдения за орбитой Луны подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью 3 ⋅ 10 − 11 {\displaystyle 3\cdot 10^{-11}} .

Связь с геометрией евклидова пространства

Факт равенства с очень высокой точностью 10 − 9 {\displaystyle 10^{-9}} показателя степени расстояния в знаменателе выражения для силы тяготения числу 2 {\displaystyle 2} отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса

Исторический очерк

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур , Гассенди , Кеплер , Борелли , Декарт , Роберваль , Гюйгенс и другие . Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире . Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда , Рена и Гука . Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики . До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической . Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнано, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы . Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества . После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.

В то же время ньютоновская теория содержала ряд трудностей. Главная из них - необъяснимое дальнодействие : сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс . В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия .

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году , с созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия , оказалась приближением более общей теории, применимым при выполнении двух условий:

В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона

Δ Φ = − 4 π G ρ {\displaystyle \Delta \Phi =-4\pi G\rho } .

Известно (Гравитационный потенциал), что в этом случае гравитационный потенциал имеет вид:

Φ = − 1 2 c 2 (g 44 + 1) {\displaystyle \Phi =-{\frac {1}{2}}c^{2}(g_{44}+1)} .

Найдем компоненту тензора энергии-импульса из уравнений гравитационного поля общей теории относительности:

R i k = − ϰ (T i k − 1 2 g i k T) {\displaystyle R_{ik}=-\varkappa (T_{ik}-{\frac {1}{2}}g_{ik}T)} ,

где R i k {\displaystyle R_{ik}} - тензор кривизны . Для мы можем ввести кинетический тензор энергии-импульса ρ u i u k {\displaystyle \rho u_{i}u_{k}} . Пренебрегая величинами порядка u / c {\displaystyle u/c} , можно положить все компоненты T i k {\displaystyle T_{ik}} , кроме T 44 {\displaystyle T_{44}} , равными нулю. Компонента T 44 {\displaystyle T_{44}} равна T 44 = ρ c 2 {\displaystyle T_{44}=\rho c^{2}} и, следовательно T = g i k T i k = g 44 T 44 = − ρ c 2 {\displaystyle T=g^{ik}T_{ik}=g^{44}T_{44}=-\rho c^{2}} . Таким образом, уравнения гравитационного поля принимают вид R 44 = − 1 2 ϰ ρ c 2 {\displaystyle R_{44}=-{\frac {1}{2}}\varkappa \rho c^{2}} . Вследствие формулы

R i k = ∂ Γ i α α ∂ x k − ∂ Γ i k α ∂ x α + Γ i α β Γ k β α − Γ i k α Γ α β β {\displaystyle R_{ik}={\frac {\partial \Gamma _{i\alpha }^{\alpha }}{\partial x^{k}}}-{\frac {\partial \Gamma _{ik}^{\alpha }}{\partial x^{\alpha }}}+\Gamma _{i\alpha }^{\beta }\Gamma _{k\beta }^{\alpha }-\Gamma _{ik}^{\alpha }\Gamma _{\alpha \beta }^{\beta }}

значение компоненты тензора кривизны R 44 {\displaystyle R_{44}} можно взять равным R 44 = − ∂ Γ 44 α ∂ x α {\displaystyle R_{44}=-{\frac {\partial \Gamma _{44}^{\alpha }}{\partial x^{\alpha }}}} и так как Γ 44 α ≈ − 1 2 ∂ g 44 ∂ x α {\displaystyle \Gamma _{44}^{\alpha }\approx -{\frac {1}{2}}{\frac {\partial g_{44}}{\partial x^{\alpha }}}} , R 44 = 1 2 ∑ α ∂ 2 g 44 ∂ x α 2 = 1 2 Δ g 44 = − Δ Φ c 2 {\displaystyle R_{44}={\frac {1}{2}}\sum _{\alpha }{\frac {\partial ^{2}g_{44}}{\partial x_{\alpha }^{2}}}={\frac {1}{2}}\Delta g_{44}=-{\frac {\Delta \Phi }{c^{2}}}} . Таким образом, приходим к уравнению Пуассона:

Δ Φ = 1 2 ϰ c 4 ρ {\displaystyle \Delta \Phi ={\frac {1}{2}}\varkappa c^{4}\rho } , где ϰ = − 8 π G c 4 {\displaystyle \varkappa =-{\frac {8\pi G}{c^{4}}}}

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского , около 1,6⋅10 −35 ). Построение непротиворечивой квантовой теории гравитации - одна из важнейших нерешённых задач современной физики.

С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности , энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac {F}{m}\), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

\(F \sim m_1 \cdot m_2\)

Зависимость силы тяготения от расстояния между телами

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Докажем это . Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac {4 \pi^2 \cdot R}{T^2}\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли R з ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

\(a = \frac {4 \pi^2 \cdot 60 \cdot 6,4 \cdot 10^6}{(2,4 \cdot 10^6)^2} \approx 0,0027\) м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

\(F \sim \frac {1}{R^2}\).

Закон всемирного тяготения

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

\(F = G \cdot \frac {m_1 \cdot m_2}{R^2}.\quad (1)\)

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности G называется гравитационной постоянной .

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек . При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

\(G = F \cdot \frac {R^2}{m_1 \cdot m_2}\).

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m 1 = m 2 = 1 кг), то гравитационная постоянная численно равна модулю силы F . Таким образом (физический смысл ),

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м .

В СИ гравитационная постоянная выражается в

.

Опыт Кавендиша

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F , действующей на тело массой m 1 со стороны тела массой m 2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m 1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m 2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2)/кг 2

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет . Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна . Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Вы уже знаете, что между всеми телами действуют силы притяжения, называемые силами всемирного тяготения .

Их действие проявляется, например, в том, что тела падают на Землю, Луна вращается вокруг Земли, а планеты вращаются вокруг Солнца. Если бы силы тяготения исчезли, Земля улетела бы от Солнца (рис. 14.1).

Закон всемирного тяготения сформулировал во второй половине 17-го века Исаак Ньютон.
Две материальные точки массой m 1 и m 2 находящиеся на расстоянии R, притягиваются с силами, прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними . Модуль каждой силы

Коэффициент пропорциональности G называют гравитационной постоянной . (От латинского «гравитас» - тяжесть.) Измерения показали, что

G = 6,67 * 10 -11 Н * м 2 /кг 2 . (2)

Закон всемирного тяготения раскрывает еще одно важное свойство массы тела: она является мерой не только инертности тела, но и его гравитационных свойств.

1. Чему равны силы притяжения двух материальных точек массой 1 кг каждая, находящихся на расстоянии 1 м друг от друга? Во сколько раз эта сила больше или меньше веса комара, масса которого 2,5 мг?

Столь малое значение гравитационной постоянной объясняет, почему мы не замечаем гравитационного притяжения между окружающими нас предметами.

Силы тяготения заметно проявляют себя только тогда, когда хотя бы одно из взаимодействующих тел имеет огромную массу – например, является звездой или планетой.

3. Как изменится сила притяжения между двумя материальными точками, если расстояние между ними увеличить в 3 раза?

4. Две материальные точки массой m каждая притягиваются с силой F. С какой силой притягиваются материальные точки массой 2m и Зm, находящиеся на таком же расстоянии?

2. Движение планет вокруг Солнца

Расстояние от Солнца до любой планеты во много раз больше размеров Солнца и планеты. Поэтому при рассмотрении движения планет их можно считать материальными точками. Следовательно, сила притяжения планеты к Солнцу

где m – масса планеты, M С – масса Солнца, R – расстояние от Солнца до планеты.

Будем считать, что планета движется вокруг Солнца равномерно по окружности. Тогда скорость движения планеты можно найти, если учесть, что ускорение планеты a = v 2 /R обусловлено действием силы F притяжения Солнца и тем, что согласно второму закону Ньютона F = ma.

5. Докажите, что скорость планеты

чем больше радиус орбиты, тем меньше скорость планеты .

6. Радиус орбиты Сатурна примерно в 9 раз больше радиуса орбиты Земли. Найдите устно, чему примерно равна скорость Сатурна, если Земля движется по своей орбите со скоростью 30 км/с?

За время, равное одному периоду обращения T, планета, двигаясь со скоростью v, проходит путь, равный длине окружности радиуса R.

7. Докажите, что период обращения планеты

Из этой формулы следует, что чем больше радиус орбиты, тем больше период обращения планеты .

9. Докажите, что для всех планет Солнечной системы

Подсказка. Воспользуйтесь формулой (5).
Из формулы (6) следует, что для всех планет Солнечной системы отношение куба радиуса орбиты к квадрату периода обращения одинаково . Эту закономерность (ее называют третьим законом Кеплера) обнаружил немецкий ученый Иоганн Кеплер на основании результатов многолетних наблюдений датского астронома Тихо Браге.

3. Условия применимости формулы для закона всемирного тяготения

Ньютон доказал, что формулу

F = G(m 1 m 2 /R 2)

для силы притяжения двух материальных точек можно применять также:
– для однородных шаров и сфер (R – расстояние между центрами шаров или сфер, рис. 14.2, а);

– для однородного шара (сферы) и материальной точки (R – расстояние от центра шара (сферы) до материальной точки, рис. 14.2, б).

4. Сила тяжести и закон всемирного тяготения

Второе из приведенных выше условий означает, что по формуле (1) можно найти силу притяжения тела любой формы к однородному шару, который намного больше этого тела. Поэтому по формуле (1) можно рассчитать силу притяжения к Земле тела, находящегося на ее поверхности (рис. 14.3, а). Мы получим выражение для силы тяжести:

(Земля не является однородным шаром, но ее можно считать сферически симметричной. Этого достаточно для возможности применения формулы (1).)

10. Докажите, что вблизи поверхности Земли

Где M Зем – масса Земли, R Зем – ее радиус.
Подсказка. Используйте формулу (7) и то, что F т = mg.

Пользуясь формулой (1), можно найти ускорение свободного падения на высоте h над поверхностью Земли (рис. 14.3, б).

11. Докажите, что

12. Чему равно ускорение свободного падения на высоте над поверхностью Земли, равной ее радиусу?

13. Во сколько раз ускорение свободного падения на поверхности Луны меньше, чем на поверхности Земли?
Подсказка. Воспользуйтесь формулой (8), в которой массу и радиус Земли замените на массу и радиус Луны.

14. Радиус звезды белый карлик может быть равен радиусу Земли, а ее масса – равной массе Солнца. Чему равен вес килограммовой гири на поверхности такого «карлика»?

5. Первая космическая скорость

Представим себе, что на очень высокой горе установили огромную пушку и стреляют из нее в горизонтальном направлении (рис. 14.4).

Чем больше начальная скорость снаряда, тем дальше он упадет. Он не упадет вообще, если подобрать его начальную скорость так, чтобы он двигался вокруг Земли по окружности. Летя по круговой орбите, снаряд станет тогда искусственным спутником Земли.

Пусть наш снаряд-спутник движется по низкой околоземной орбите (так называют орбиту, радиус которой можно принять равным радиусу Земли R Зем).
При равномерном движении по окружности спутник движется с центростремительным ускорением a = v2/RЗем, где v – скорость спутника. Это ускорение обусловлено действием силы тяжести. Следовательно, спутник движется с ускорением свободного падения, направленным к центру Земли (рис. 14.4). Поэтому a = g.

15. Докажите, что при движении по низкой околоземной орбите скорость спутника

Подсказка. Воспользуйтесь формулой a = v 2 /r для центростремительного ускорения и тем, что при движении по орбите радиуса R Зем ускорение спутника равно ускорению свободного падения.

Скорость v 1 , которую необходимо сообщить телу, чтобы оно двигалось под действием силы тяжести по круговой орбите вблизи поверхности Земли, называют первой космической скоростью. Она примерно равна 8 км/с.

16. Выразите первую космическую скорость через гравитационную постоянную, массу и радиус Земли.

Подсказка. В формуле, полученной при выполнении предыдущего задания, замените массу и радиус Земли на массу и радиус Луны.

Чтобы тело навсегда покинуло окрестности Земли, ему надо сообщить скорость, равную примерно 11,2 км/с. Ее называют второй космической скоростью.

6. Как измерили гравитационную постоянную

Если считать известными ускорение свободного падения g вблизи поверхности Земли, массу и радиус Земли, то значение гравитационной постоянной G можно легко определить с помощью формулы (7). Проблема, однако, в том, что до конца 18-го века массу Земли измерить не удавалось.

Поэтому, чтобы найти значение гравитационной постоянной G, надо было измерить силу притяжения двух тел известной массы, находящихся на определенном расстоянии друг от друга. В конце 18-го века такой опыт смог поставить английский ученый Генри Кавендиш.

Он подвесил на тонкой упругой нити легкий горизонтальный стержень с небольшими металлическими шарами a и b и по углу поворота нити измерил силы притяжения, действующие на эти шары со стороны больших металлических шаров А и В (рис. 14.5). Малые углы поворота нити ученый измерял по смещению «зайчика» от прикрепленного к нити зеркальца.

Этот опыт Кавендиша образно назвали «взвешиванием Земли», потому что этот опыт впервые позволил измерить массу Земли.

18. Выразите массу Земли через G, g и R Зем.


Дополнительные вопросы и задания

19. Два корабля массой 6000 т каждый притягиваются с силами по 2 мН. Каково расстояние между кораблями?

20. С какой силой Солнце притягивает Землю?

21. С какой силой человек массой 60 кг притягивает Солнце?

22. Чему равно ускорение свободного падения на расстоянии от поверхности Земли, равном ее диаметру?

23. Во сколько раз ускорение Луны, обусловленное притяжением Земли, меньше ускорения свободного падения на поверхности Земли?

24. Ускорение свободного падения на поверхности Марса в 2,65 раз меньше ускорения свободного падения на поверхности Земли. Радиус Марса приближенно равен 3400 км. Во сколько раз масса Марса меньше массы Земли?

25. Чему равен период обращения искусственного спутника Земли на низкой околоземной орбите?

26. Чему равна первая космическая скорость для Марса? Масса Марса 6,4 * 10 23 кг, а радиус 3400 км.

В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).