Способ замены плоскостей проекций. Сущность способа замены плоскостей проекций состоит в том, что заданную систему плоскостей проекций заменяют новой системой так


Сущность способа замены плоскостей проекций состоит в том, что заданную систему плоскостей проекций заменяют новой системой так, что геометрические фигуры оказываются в частном положении относительно новой системы плоскостей проекций.

Проследим, как изменятся проекции точки B , если плоскость V заменить на новую плоскость проекций V 1 (рис. 5.1, а ). Плоскость V 1 проводим перпендикулярно плоскости Н , положение которой остается без изменения. Плоскости Н и V 1 пересекутся по прямой 0х 1 , определяющей новую ось проекций. В новой системе плоскостей проекций вместо проекций b и b" получим новые проекции b и b 1 ′ . Легко убедиться, что расстояние от новой проекции точки b 1 ′ до новой оси 0х 1 (координата Z ) равно расстоянию от заменяемой проекции b" до заменяемой оси . Чтобы перейти от пространственного чертежа к эпюру, нужно совместить плоскость V 1 с плоскостью Н . На эпюре (рис. 5.1, 6 ) для построения новой проекции b 1 ′ используем неизменность координаты Z точки B . Для этого достаточно из горизонтальной проекции b провести перпендикуляр к новой оси 0х 1 и от точки b X 1 отложить координату Z , определяемую расстоянием b"b x (Z B ) в прежней системе.

Замена горизонтальной плоскости Н новой плоскостью Н 1 (рис. 5.1, в ) производится аналогично, с той лишь разницей, что теперь не изменяется фронтальная проекция точки b" , для построения новой горизонтальной проекции b 1 необходимо из сохраняемой фронтальной проекции b" провести линию связи к новой оси 0х 1 и отложить от новой оси расстояние, равное расстоянию от заменяемой проекции b до заменяемой оси .

Замена плоскостей проекций может осуществляться только последовательно, нельзя менять обе плоскости сразу.

Рассмотрим на примерах, как производится замена плоскостей проекций и строятся новые проекции фигур.

Задача 1. Определить длину отрезка прямой АВ общего положения.

Заменяем плоскость V плоскостью V 1 , параллельной отрезку АВ (рис. 5.2, а ). Проводим новую ось Х 1 параллельно ab и на перпендикулярах, проведенных к ней из точек а и b, откладываем а X 1 а 1 ′ = а x а" и b X 1 b 1 ′ = b x b". Получаем новую проекцию a 1 ′b 1 ′ = AB и одновременно угол α наклона прямой к плоскости Н.

Если плоскость Н заменим плоскостью H 1 параллельной отрезку АВ (рис. 5.2, б ), то получим а 1 b 1 = АВ и угол β наклона прямой к плоскости V.

Задача 2. Определить натуральную величину и форму треугольника ABC .

Задача решается последовательной заменой двух плоскостей проекций.

Сначала плоскость V заменяем плоскостью V 1 , перпендикулярной к плоскости треугольника (рис. 5.3). Для этого в плоскости треугольника проводим горизонталь AD (ad, a"d") и новую ось Х 1 располагаем перпендикулярно к ad. На новой плоскости проекций треугольник спроецируется в прямую b 1 ′а 1 ′с 1 . На втором этапе плоскость Н заменяем плоскостью Н 1 , параллельной плоскости треугольника, располагая ось Х 2 параллельно прямой b 1 ′а 1 ′с 1 ′. Построенная проекция a 1 b 1 с 1 определяет натуральную величину и форму треугольника ABC.

ПРЕОБРАЗОВАНИЕ ИЗОБРАЖЕНИЙ. ЧЕТЫРЕ ОСНОВНЫЕ ЗАДАЧИ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Лекция 6

Для упрощения решения метрических, а также некоторых позиционных задач могут применяться методы, позволяющие переходить от задания фигур общих положений к частным. Эти методы основываются на двух принципах:

1) замещение системы плоскостей проекций на новую систему плоскостей, в которой неподвижный геометрический объект занимает какое-либо частное положение (способ замены плоскостей проекций );

2) перемещение геометрического объекта в пространстве таким образом, чтобы он занял какое-либо частное положение в неподвижной системе плоскостей проекций (способ вращения ).

В зависимости от расположения оси в пространстве, вокруг которой вращается геометрический объект, различают следующие виды способа вращения:

1) вращение вокруг линии уровня;

2) вращение вокруг проецирующей прямой;

3) плоско-параллельное перемещение.

Эти способы преобразования включают в себя четыре основные задачи начертательной геометрии :

1. Преобразование комплексного чертежа таким образом, чтобы прямая общего положения стала линией уровня.

2. Преобразование комплексного чертежа таким образом, чтобы линия уровня стала проецирующей прямой.

3. Преобразование комплексного чертежа таким образом, чтобы плоскость общего положения стала проецирующей плоскостью уровня.

4. Преобразование комплексного чертежа таким образом, чтобы проецирующая плоскость стала плоскостью уровня.

Сущность этого метода заключается в том, что проецируемый объект не изменяет своего положения в пространстве, а заменяется система плоскостей проекций. Может быть заменена одна, две и более плоскостей. Замена производится до тех пор, пока геометрический объект не займет частное положение относительно новой плоскости проекций. При этом новая плоскость должна быть перпендикулярна оставшейся «старой» плоскости проекций.

Возьмем точку А , расположенную в ортогональной системе плоскостей проекций , и повернем вокруг нее горизонтальную плоскость проекций P 1 в положение , получив таким образом новую ортогональную систему плоскостей проекций . При этом должно соблюдаться следующее условие:

Расстояние от точки до «старой» плоскости проекций в новой системе плоскостей проекций должно остаться неизменным.



1 основная задача. Преобразованием прямой общего положения в прямую уровня можно определить:

Натуральную длину отрезка;

Углы наклона прямой к плоскостям проекций.

2 основная задача. С помощью преобразования прямой уровня в проецирующую прямую можно найти:


Расстояние между точкой и прямой;

Расстояние между параллельными или скрещивающимися прямыми и т.п.

3 основная задача. Преобразованием плоскости общего положения в проецирующую плоскость можно определить:

Расстояние от точки до плоскости или расстояние между параллельными плоскостями;

Углы наклона плоскости к плоскостям проекций.

4 основная задача. Преобразованием проецирующей плоскости в плоскость уровня можно найти:

Натуральную величину плоской фигуры;

Угол между пересекающимися прямыми;

Центр описанной или вписанной окружности;

Построить биссектрису угла и т.п.

1. Преобразовать чертеж так, чтобы прямая общего положения оказалась прямой уровня (рис. 35).

Новую плоскость проекций П 4 , а значит, ось Х 1,4 располагаем параллельно одной из проекций прямой.

Х 1,4 || А 1 В 1

Рис. 35 Рис. 36

2. Преобразовать чертеж так, чтобы прямая уровня оказалась проецирующей, т.е. перпендикулярной новой плоскости проекции (рис. 36).

Исходя из графического признака проецирующей прямой, одна из проекций должна быть перпендикулярна оси проекций А 1 В 1 Х 1,4 .

3. Преобразовать чертеж так, чтобы плоскость общего положения в новой системе плоскостей проекций стала проецирующей (рис. 37).

Для того чтобы плоскость общего положения (АВС) стала перпендикулярной новой плоскости проекций, необходимо в этой плоскости АВС иметь линию, которая по отношению к новой плоскости проекций была бы перпендикулярна.

Это условие выполнимо с помощью вспомогательной прямой - линии уровня (горизонтали или фронтали) данной плоскости (АВС).

На чертеже проводим ось Х 1,4 перпендикулярно горизонтали h : х 1,4 h 1 ; АВС П 4 ; β - угол наклона плоскости АВС к плоскости П 1 .

4. Преобразовать чертеж так, чтобы проецирующая плоскость в новой системе плоскостей стала плоскостью уровня (рис. 38).

Исходя из графического признака плоскости уровня, ось Х 1,4 располагаем параллельно плоскости треугольника Х 1,4 || А 1 В 1 С 1 ;

АВС || П 4 .

    1. Типы задач, решаемые способом преобразования плоскостей проекций.

Путем преобразования проекций возможно решение следующих задач:

    Определение натуральной величины отрезка прямой и углов его наклона к плоскостям проекций.

    Определение расстояния от точки до прямой.

    Определение расстояния между параллельными прямыми.

    Определение расстояния между скрещивающимися прямыми.

    Определение величины двугранного угла.

    Определение расстояния от точки до плоскости.

    Определение расстояния между параллельными плоскостями.

    Определение истинной величины плоской фигуры.

    Определение угла наклона прямой и плоскости.

10. Определение углов наклона плоскости к плоскостям проекций и т.п.

Определить расстояние от точки D до плоскости АВС (рис. 39). Для определения искомого расстояния плоскость АВС преобразуем в проецирующую, для этого в ней проведем горизонталь (h) и новую плоскость П 4 поставим перпендикулярно h, а значит, Х 1,4 перпендикулярно проекции горизонтали (h 1 ), таким образом, плоскость АВС станет перпендикулярной плоскости П 4 Искомое расстояние - (D 4 K 4 ) - величина перпендикуляра, опущенного из . D 4 на линию А 4 В 4 С 4 (проекцию плоскости АВС на плоскость П 4 ).

    1. Вопросы для самопроверки.

    Какие существуют способы преобразования проекций?

    В чем сущность изображения проекций способом замены плоскостей проекций?

    Перечислите 4 основные задачи, решаемые методом замены плоскостей проекций.

    Какие типы задач можно решить способом замены плоскостей проекций?

Изменение взаимного положения проецируемой фигуры и плоскостей проекций методом перемены плоскостей проекций, достигается путем замены плоскостей П 1 и П 2 новыми плоскостями П 4 (рисунок 7.1). Новые плоскости выбираются перпендикулярно старым. Некоторые преобразования проекций требуют двойной замены плоскостей проекций (рисунок 7.2). Последовательный переход от одной системы плоскостей проекций к другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1: Определить натуральную величину отрезка АВ прямой общего положений (рисунок 7.1).

Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости.

Выберем новую плоскость проекций П 4 , параллельно отрезку АВ и перпендикулярно плоскости П 1 . Введением новой плоскости, переходим из системы плоскостей П 1 П 2 в систему П 1 П 4 , причем в новой системе плоскостей проекция отрезка А 4 В 4 будет натуральной величиной отрезка АВ .

Задача 2: Определить расстояние от точки А до прямой общего положения, заданной отрезком АВ (рисунок 7.2).

Рисунок 7.2. Определение расстояния от точки до прямой общего положения методом замены плоскостей проекций

Способ вращения

а) Способ вращения вокруг оси, перпендикулярной плоскости проекций.

Плоскости носитель траекторий перемещения точек параллельных плоскости проекций. Траектория - дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ (рисунок 7.3), выберем ось вращения перпендикулярную горизонтальной плоскости проекций и проходящую через В 1 .

Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x ). При этом точка А 1 переместиться в А * 1 , а точка В не изменит своего положения. Положение точки А * 2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из А * 1 . Полученная проекция В 2 А * 2 определяет действительные размеры самого отрезка.

б) Способ вращения вокруг оси, параллельной плоскости проекций

Рассмотрим этот способ на примере определения угла между пересекающимися прямыми (рисунок 7.4).

Рассмотрим две проекции пересекающихся прямых а и в , которые пересекаются в точке К . Для того, чтобы определить натуральную величину угла между этими прямыми необходимо произвести преобразование ортогональных проекций так, чтобы прямые стали параллельны плоскости проекций.

Воспользуемся способом вращения вокруг линии уровня - горизонтали. Проведем произвольно фронтальную проекцию горизонтали h 2 параллельно оси О х , которая пересекает прямые в точках А 2 и В 2 . Определив проекции А 1 и В 1 , построим горизонтальную проекцию горизонтали h 1. Траектория движения всех точек при вращении вокруг горизонтали - окружность, которая проецируется на плоскость П 1 в виде прямой линии перпендикулярной горизонтальной проекции горизонтали.

Таким образом, траектория движения точки К 1 определена прямой К 1 О 1 , точка О - центр окружности - траектории движения точки К . Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО . Продолжим прямую К 1 О 1 так чтобы |КО |=|О 1 К * 1 | . Точка К * 1 соответствует точке К , когда прямые а и в лежат в плоскости параллельной П 1 и проведенной через горизонталь - ось вращения. С учетом этого через точку К * 1 и точки А 1 и В 1 проведем прямые, которые лежат теперь в плоскости параллельной П 1 , а следовательно и угол j - натуральная величина угла между прямыми а и в .

в) Способ плоскопараллельного перемещения

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рисунок 7.5). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Свойства плоскопараллельного перемещения:

1) При всяком перемещении точек в плоскости параллельной плоскости П 1 , её фронтальная проекция перемещается по прямой линии, параллельной оси х .

2) В случае произвольного перемещения точки в плоскости параллельной П 2 , её горизонтальная проекция перемещается по прямой параллельной оси х .

Контрольные вопросы

1 С какой целью выполняют преобразования комплексного чертежа?

2 Назовите способы преобразования комплексного чертежа.

3 Какие основные задачи решаются путем преобразования чертежа?

4 В чем сущность преобразования ортогональных проекций?

5 В чем сущность преобразования проекций способом замены плоскостей проекций?

6 Назовите задачи, для решения которых достаточно заменить только одну плоскость проекций.

7 Какие задачи можно решать путем замены двух плоскостей проекции?

8 Каким образом можно определить натуральную величину отрезка прямой общего положения? Задайте прямую общего положения (произвольно) определите ее натуральную величину способом замены плоскостей проекций..

9 Как определить расстояние от точки до прямой?

10 В чем сущность преобразования чертежа способом вращения?

11 Какие линии используются в качестве осей вращения?

12 Как изменяется фронтальная проекция предмета при вращении его вокруг фронтально проецирующей прямой?

13 В чем сущность способа плоскопараллельного переноса?

14 В чем сущность способа плоскопараллельного переноса?

Метрические задачи

Метрические задачи, задачи связанные с определением истинных (натуральных) величин расстояний, углов и плоских фигур на комплексном чертеже.
Существует три группы метрических задач:
Группа задач 1 включающая в себя определение расстояний от точки до точки; от точки до прямой; от точки до плоскости; от точки до поверхности; от прямой до другой прямой; от прямой до плоскости; от плоскости до плоскости. Причем расстояние от прямой до плоскости и между плоскостями измеряется в тех случаях, когда они параллельны.
Группа задач 2 включающая определение углов между пересекающимися или скрещивающимися прямыми, между прямой и плоскостью, между плоскостями (имеется в виду определение величины двухгранного угла).
Группа задач 2, 3 связанная с определением истинной величины плоской фигуры и части поверхности (развертки).

Приведенные задачи могут быть решены с применением различных способов преобразования чертежа.

В основе решения метрических задач лежит свойство прямоугольного проецирования, заключающееся в том, что любая геометрическая фигура на плоскость проекций проецируется в натуральную величину, если она лежит в плоскости, параллельной этой плоскости проекций. Решение задач значительно упрощается, если хотя бы одна из геометрических фигур, участвующих в задачах, занимает частное положение. Если одна из геометрических фигур не занимает частного положения, необходимо выполнить определенные построения, позволяющие провести одну из них в это положение.

Определение расстояний между геометрическими моделями пространства. Определение длины отрезка прямой позволяет решить задачу определения расстояния от точки до точки, так как это расстояние и определяется отрезком прямой. Расстояние от точки до прямой измеряется отрезком перпендикуляра, проведенного из точки к прямой. Отрезок этого перпендикуляра изображается в натуральную величину на плоскости в том случае, если он проведен к проецирующей прямой. Значит, нужно преобразовать чертеж данной прямой, сделав ее в новой системе плоскостей проекций проецирующей. На рисунке 7.6 определено расстояние от точки М до прямой АВ:

1) П 2 _|_П 1 -> П 1 _|_П 4 , П 4 ||АВ, П 1 /П 4 ||A 1 B 1 ;

2) П 1 П 4 -> П 4 _|_П 5 , П 5 _|_AB, П 4 /П 5 _|_A 4 B 4 ;

3) M 5 K 5 - истинное расстояние от точки М до прямой AB;

Так как перпендикуляр к проецирующей плоскости есть линия уровня, то удобно иметь на чертеже «вырожденную» проекцию данной плоскости, т. е. преобразовать чертеж.

На рисунке 7.7 построены проекции перпендикуляра МК, отрезок которого определяет расстояние от точки М до плоскости Q(ABC):

1) П 1 ,П 2 ->П 1 _|_П 4 , П 4 _|_Q, П 1 /П 4 _|_ h(A, 1)~ 0;

2) М 4 K 4 _|_Q 4 - истинная величина расстояний от точки М до плоскости Q;

3) M 1 K 1 _|_K 4 K l или || П 1 / П 4 ;

4) K 2 построена с помощью высоты точки К, измеренной на плоскости П 4 .

Расстояние между параллельными прямыми измеряется отрезком перпендикуляра между ними.

Рисунок 7.8

Построения проекций перпендикуляра МК в исходной системе плоскостей проекций аналогичны рассмотренным ранее.

Для определения расстояния между скрещивающимися прямыми необходимо одну из прямых сделать проецирующей в новой системе плоскостей проекций.

Расстояние от прямой до плоскости, параллельной прямой, измеряется отрезком перпендикуляра, опущенного из любой точки прямой на плоскость. Значит, достаточно плоскость общего положения преобразовать в положение проецирующей плоскости, взять на прямой точку, и решение задачи будет сведено к определению расстояния от точки до плоскости.

Расстояние между параллельными плоскостями измеряется отрезком перпендикуляра между ними, который легко строится, если плоскости займут проецирующее положение в новой системе плоскостей проекции, т. е. опять используется третья исходная задача преобразования чертежа.

Определение натуральных величин плоских фигур. Определение истинной величины плоской фигуры можно осуществить путем преобразования чертежа способом замены плоскостей проекций. На рисунке 7.9, а дан комплексный чертеж прямоугольника ABCD. Ни одна из проекций прямоугольника не занимает частного положения. Задачу решаем последовательным решением третьей и четвертой основных задач. Заменив плоскость П 2 на П 4 , приводим прямоугольник в частное положение, т. е. в виде проецирующей по отношению к П 4 - Выполнив вторую замену, то есть замену П 4 на П 5 , определяем истинную величину прямоугольника ABC.

Задачу определения истинной величины прямоугольника можно также решить способом вращения вокруг линии уровня плоскости этой фигуры до совмещения с соответствующей плоскостью уровня (рисунок 7.9, б).

Рисунок 7.9

Контрольные вопросы

1 Какие задачи называются метрическими?

2 Какие группы задач выделяются в метрических задачах?

3 Как на комплексном чертеже определить расстояние между двумя точками пространства; от точки до прямой; от точки до плоскости?

4 Как определить кратчайшее расстояние между двумя параллельными прямыми; скрещивающимися прямыми; от прямой до плоскости?

5 Какие построения необходимо выполнить на чертеже, чтобы определить натуральную величину угла между двумя пересекающимися прямыми общего положения?

6 Как по чертежу определить истинную величину угла между плоскостями общего положения, если ребро образованного ими двугранного угла не задано?

7 Какие вы знаете способы построения истинной величины фигуры сечения поверхности плоскостью общего положения?

Часто графическое решение задач существенно упрощается, если заданные плоскости проекций заменить на новые, такие, что в результате замены геометрические объекты займут частное положение.

Сущность способа замены плоскостей проекций заключается в том, что заданные плоскости последовательно заменяются на новые при неизменном положении геометрических объектов в пространстве. Каждая новая плоскость проекций располагается перпендикулярно незаменяемой плоскости проекций.

Важно отметить, что обе заданные плоскости проекций нельзя заменить сразу. Когда требуется замена двух плоскостей проекций, нужно заменить сначала одну, а затем другую, т.е. сделать два преобразования.

При введении новой фронтальной плоскости проекций координаты Z всех геометрических объектов остаются неизменными как в исходной системе плоскостей проекций, так и в новой; при введении новой горизонтальной плоскости проекций неизменными и в исходной, и в новой системе плоскостей проекций остаются координаты Y.

Указанные положения наглядно проиллюстрированы на рис. 37, где показаны преобразования, которые необходимо выполнить при введении (замене) новой плоскости проекций П 4 .

СПОСОБЫ ВРАЩЕНИЯ И ПЛОСКОПАРАЛЛЕЛЬНОГО

ПЕРЕНОСА

Суть метода вращения состоит в том, что при неизменном положении основных плоскостей проекций изменяется положение заданных геометрических образов относительно них путем вращения объектов вокруг некоторой оси до тех пор, пока объекты не занимают частное положение в исходной системе плоскостей.

В качестве осей вращения удобнее принимать проецирующие прямые или прямые уровня, причем точки геометрических объектов вращаются в плоскостях, параллельных или перпендикулярных заданным плоскостям проекций. При повороте какого-либо геометрического образа радиус поворота у каждой его точки свой, а угол поворота для всех точек одинаков. На комплексном чертеже при использовании метода вращения принято показывать положение оси вращения.

При вращении вокруг горизонтально-проецирующей прямой i горизонтальная проекция А 1 точки А перемещается по окружности, а фронтальная (А 2) - по прямой, представляющей собой проекцию окружности той плоскости, в которой вращается точка А (рис. 38).

Отметим, что проекции точек на фронтальной плоскости проекций лежат на прямых, перпендикулярных исходным линиям связи. Используя это, можно не задаваться изображением оси вращения и не устанавливать величину его радиуса, на чем и основан метод плоскопараллельного перемещения как частный случай метода вращения. Рассмотрим способ плоскопараллельного переноса на примере решения задачи об определении натуральной величины треугольника ABC (рис. 39).

Решение. Заданный треугольник надо расположить так, чтобы горизонтальная проекция горизонтали плоскости треугольника оказалась перпендикулярной оси X. Поскольку горизонталь плоскости треугольника после такого преобразования станет фронтально-проецирующей прямой, а все горизонтали плоскости параллельны, плоскость треугольника ABC станет фронтально-проецирующей. Сущность следующего преобразования – сделать плоскость треугольника параллельной горизонтальной плоскости проекций. Для этого линию А 2 = В 2 = нужно расположить параллельно оси X. Тогда треугольник A 1 = B 1 = C 1 = станет представлять натуральную величину треугольника ABC.

ЧЕТЫРЕ ИСХОДНЫЕ ЗАДАЧИ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА

Подавляющее большинство метрических задач рассматривает прямые и плоскости. Если заранее известно, какие построения нужно выполнить, чтобы прямая (или плоскость) общего положения заняла частное, решение многих метрических задач значительно облегчается.

Частных положений, как у прямой, так и у плоскости - два (прямая (плоскость) уровня и проецирующая). Это означает, что существуют четыре исходные задачи преобразования чертежа, в результате которых: прямая общего положения становится прямой уровня; прямая общего положения становится проецирующей; плоскость общего положения переходит в проецирующую; плоскость общего положения становится плоскостью уровня.

Для решения подобных задач воспользуемся методом замены плоскостей проекций, хотя каждая из них может решаться как способом вращения, так и способом плоскопараллельного переноса.

Задача 1. Преобразовать прямую общего положения (АВ) в прямую уровня (рис. 40). Для решения задачи введем новую фронтальную плоскость проекций П 4 , расположенную параллельно горизонтальной проекции A 1 B 1 прямой (АВ). Т.к. при введении новой фронтальной плоскости проекций координаты Z точек А и В не изменяются, дальнейшие построения ясны из

чертежа, причем проекция А 4 В 4 представляет собой натуральную величину отрезка [АВ]. Таким образом, решение рассмотренной задачи преобразования комплексного чертежа представляет собой еще один способ нахождения натуральной величины отрезка прямой общего положения.

Задача 2. Прямую общего положения необходимо преобразовать в положение проецирующей прямой (рис. 41).

Решение. Задача решается путем двух преобразований, поскольку нужно сделать две замены плоскостей проекций: первой прямая общего положения переводится в положение прямой уровня, а второй полученная прямая уровня переводится в проецирующую. Первое преобразование представляет собой решение рассмотренной выше задачи. Т.к. вводимая во втором преобразовании плоскость проекций (П 5) является новой горизонтальной плоскостью проекций, точка А 5 располагается на линии проекционной связи А 4 А 5 на расстоянии, равном величине координаты Y точки А в системе плоскостей проекций П 1 -П 4 .

Овладев алгоритмом решения приведенной задачи, можно легко найти расстояния между параллельными и скрещивающимися прямыми, от точки до плоскости, а также натуральную величину двугранного угла (представив линию пересечения двух плоскостей в виде проецирующей прямой).

Задача 3. Перевести плоскость общего положения, заданную треугольником ABC, в проецирующую (рис. 42).

Решение. Плоскость, заданная любым способом, представима как множество соответствующих прямых уровня - либо ее горизонталей, либо фронталей. Поэтому преобразования нужно проводить так, чтобы прямые уровня плоскости спроецировались в точки. Тогда плоскость спроецируется в совокупность точек, расположенных на одной прямой. Следовательно, если в заданной плоскости общего положения провести прямые какого-либо уровня, то, расположив новую плоскость проекций перпендикулярно горизонтальной проекции горизонтали или фронтальной проекции фронтали плоскости, можно получить соответствующую проецирующую плоскость (рис. 42).

Такой подход позволяет находить расстояния от точки до прямой, между плоскостью и параллельной ей прямой, между параллельными плоскостями.

Задача 4. Плоскость общего положения, заданную треугольником ABC, перевести в положение плоскости уровня (рис. 43).

Решение. Задача решается с помощью двух преобразований. Первым плоскость общего положения переводится в положение проецирующей (решение исходной задачи 3, изложенное выше), а вторым полученная проецирующая плоскость переводится в положение плоскости уровня (на рис. 42 это плоскость горизонтального уровня). Точки А 5 , В 5 и C s расположены от оси X, разделяющей плоскости П 4 и П 5 , на расстояниях, равных величинам координат Y для точек А, В и С в системе плоскостей проекций П 1 -П 4 .

Решение рассмотренной задачи позволяет находить натуральные величины плоских фигур (следовательно, сторон многоугольников и плоских углов). Решение этой же задачи методом плоскопараллельного переноса приведено на рис. 39.

Вопросы

1. Способы преобразования чертежа.

2. В чем заключается способ замены плоскостей?

3. Прямая какого положения используется при определении натуральной величины отрезка способы вращения?

4. Суть плоско-параллельного переноса..

5. сколько раз надо вращать плоскую фигуру вокруг проецирующей прямой для определения натуральной величины?

Тесты к теме « Четыре исходные задачи преобразования чертежа»

1. Как располагается дополнительная плоскость проекций относительно прямой при определении натуральной величины отрезка?

а) параллельно

б) перпендикулярно

в) произвольно

2. Как располагается дополнительная плоскость проекций относительно исходных плоскостей проекций?

а) перпендикулярно одной плоскости проекции

б) перпендикулярно двум плоскостям проекции

в) произвольно

3. Как располагается новая ось относительно проекций отрезка прямой при определении натуральной величины отрезка?

а) параллельно проекции отрезка, расположенной в плоскости перпендикулярной к дополнительной

б) перпендикулярно проекции отрезка, расположенной в плоскости перпендикулярной к дополнительной

в) произвольно

4. Сколько преобразований необходимо для определения натуральной величины плоской фигуры?

5. Сколько необходимо ввести дополнительных плоскостей проекции для преобразования прямой общего положения в проецирующую?