Расчет местных сопротивлений воздуховодов. Аэродинамический расчет системы вентиляции


Цель аэродинамического расчета заключается в определении размеров поперечных сечений и потерь давлений на участках системы и в системе в целом. При расчете необходимо учитывать следующие положения.

1. На аксонометрической схеме системы проставляются расходы и двсех участков.

2. Выбирается магистральное направление и производится нумерация участков, затем нумеруют ответвления.

3. По допустимой скорости на участках магистрального направления определяют площади поперечных сечений:

Полученный результат округляют до стандартных значений, являющихся расчетными, и по стандартной площади находят диаметр d или размеры a и b канала.

В справочной литературе до таблиц аэродинамического расчета приведен перечень стандартных размеров площадей воздуховодов круглой и прямоугольной формы.

*Примечание: мелкие птицы, попавшие в зону факела со скоростью, равной 8 м/с, прилипают к решетке.

4. Из таблиц аэродинамического расчета по выбранному диаметру и расходу на участке определяют расчетные значения скорости υ, удельные потери на трение R, динамическое давление Р дин. Если необходимо, то определяют коэффициент относительной шероховатости β ш.

5. На участке определяют виды местных сопротивлений, их коэффициенты ξ и суммарное значение ∑ξ.

6. Находят потери давления в местных сопротивлениях:

Z = ∑ξ · Р дин.

7. Определяют потери давления на трение:

∆Р тр = R · l.

8.Рассчитывают потери давления на данном участке по одной из следующих формул:

∆Р уч = Rl + Z,

∆Р уч = Rlβ ш + Z.

Расчет повторяют с пункта 3 до пункта 8 для всех участков магистрального направления.

9. Определяют потери давления в оборудовании, расположенном на магистральном направлении ∆Р об.

10. Рассчитывают сопротивление системы ∆Р с.

11. Для всех ответвлений повторяют расчет с пункта 3 до пункта 9, если на ответвлениях есть оборудование.

12. Производят увязку ответвлений с параллельными участками магистрали:

. (178)

Ответвления должны иметь сопротивление немного больше или равное сопротивлению параллельного участка магистрали.

Воздуховоды прямоугольной формы имеют аналогичный порядок расчета, только в пункте 4 по значению скорости, найденной из выражения:

,

и эквивалентного диаметра по скорости d υ находят из таблиц аэродинамического расчета справочной литературы удельные потери на трение R, динамическое давление Р дин, причем L табл ≠ L уч.

Аэродинамические расчеты обеспечивают выполнение условия (178) за счет изменения диаметров на ответвлениях или установкой дросселирующих устройств (дроссель-клапанов, шиберов).

Для некоторых местных сопротивлений значение ξ приводится в справочной литературе в зависимости от скорости. Если значение расчетной скорости не совпадает с табличным, то ξ пересчитывают по выражению:

Для неразветвленных систем или систем незначительных размеров увязку ответвлений производят не только с помощью дроссель-клапанов, но и диафрагм.

Для удобства аэродинамический расчет выполняют в табличной форме.

Рассмотрим порядок аэродинамического расчета вытяжной механической системы вентиляции.



№№ участ-ка L, м 3 /ч F, м 2 V, м/с a×b, мм D э, мм β ш R, Па/м l, м Rlβ ш, Па Вид местного сопротивления ∑ξ Р д, Па Z=∑ξ· Р д Па ΔР = Rl + Z, Па
на участке на магист-рале
1-2 0,196 11,71 - 2,56 11,93 30,5 0,42-вн. расширение 0,38-конфузор 0,21-2отвода 0,35-тройник 1,57 83,63 131,31 282,85 282,85
2-3 0,396 11,59 - 1,63 15,35 25,0 0,21-3отвода 0,2-тройник 0,83 81,95 68,02 93,04 375,89
3-4 0,502 10,93 - 1,25 2,76 3,5 0,21-2отвода 0,1-переход 0,52 72,84 37,88 41,33 417,21
4-5 0,632 8,68 795х795 2,085 0,82 3,50 6,0 5,98 423,20
2"-2 0,196 11,71 - 2,56 6,27 16,1 0,42-вн. расширение 0,38-конфузор 0,21-2отвода 0,98-тройник 1,99 83,63 166,43 303,48
6-7 0,0375 5,50 250х200 - 1,8-сетка 1,80 18,48 33,26 33,26
0,078 10,58 - 3,79 5,54 21,0 1,2-поворот 0,17-тройник 1,37 68,33 93,62 114,61
7-3 0,078 11,48 - 4,42 5,41 23,9 0,17-отвод 1,35-тройник 1,52 80,41 122,23 146,14
7"-7 0,015 4,67 200х100 - 1,8-сетка 1,80 13,28 23,91 23,91
0,0123 5,69 - 3,80 1,23 4,7 1,2-поворот 5,5-тройник 6,70 19,76 132,37 137,04

Тройники имеют два сопротивления - на проход и на ответвление, и они всегда относятся к участкам с меньшим расходом, т.е. либо к проходному сечению, либо к ответвлению. При расчете ответвлений в графе 16 (табл. стр.88) прочерк.

Главное требование ко всем типам систем вентиляции – обеспечивать оптимальную кратность обмена воздуха в помещениях или конкретных рабочих зонах. С учетом этого параметра проектируется внутренний диаметр воздуховода и подбирается мощность вентилятора. Для того чтобы гарантировать требуемую эффективность функционирования системы вентиляции, выполняется расчет потерь давления напора в воздуховодах, эти данные принимаются во внимание во время определения технических характеристик вентиляторов. Показатели рекомендуемой скорости воздушного потока указаны в таблице № 1.

Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений

Назначение

Основное требование
Бесшумность Мин. потери напора
Магистральные каналы Главные каналы Ответвления
Приток Вытяжка Приток Вытяжка
Жилые помещения 3 5 4 3 3
Гостиницы 5 7.5 6.5 6 5
Учреждения 6 8 6.5 6 5
Рестораны 7 9 7 7 6
Магазины 8 9 7 7 6

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150 200 250 300 350 400 450 500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
1800 870 935 990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах


В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах


Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Чтобы определиться с размерами сечений на любом из отрезков воздухораспределительной системы, необходимо произвести аэродинамический расчет воздуховодов. Показатели, полученные при таком расчёте, определяют работоспособность как всей проектируемой системы вентиляции, так и отдельных её участков.

Для создания комфортных условий в кухне, отдельной комнате или помещении в целом необходимо обеспечить правильную проектировку воздухораспределительной системы, которая состоит из множества деталей. Важное место среди них занимает воздуховод, определение квадратуры которого оказывает влияние на значение скорости воздушного потока и шумность вентиляционной системы в целом. Определить эти и ряд других показателей позволит аэродинамический расчет воздуховодов.

Последовательность выполнения

Включает несколько этапов, каждый из них определяет ряд показателей, а также их суммарные значения. Все элементы формируются в виде таблиц.

  1. Разрабатывается аксонометрическая схема воздухораспределительной системы и подготавливается к расчёту и выбору сечений воздуховодов.
  2. Рассчитываются аэродинамические сопротивления.
  3. Производится увязка основной линии (магистрали) и ответвлений.

Этап первый

Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.


Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.

Формирование схемы

Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.

Здесь следует определиться с магистралью – основной линией исходя из которой проводятся все операции. Она представляет собой цепь последовательно соединённых отрезков, с наибольшей нагрузкой и максимальной протяжённостью.

Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная.

Приточная

Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.

Вытяжная

Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.

Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.

Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:

  • воздуховод единого размера сечения;
  • из одного материала;
  • с постоянным потреблением воздуха.

Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.


Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.

Определение размерных величин сечений воздуховодов

Производится исходя из таких показателей, как:

  • потребление воздуха на отрезке;
  • нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях - 6м/с, на шахтах где происходит забор воздуха – 5м/с.

Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.

Этап второй

Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.

Расчёт потерь давления на трение

Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.

Вычисление показателя динамического давления на отрезке

Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:

  • скорости воздушного потока в системе;
  • плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.

Определение значений местных сопротивлений на участках

Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.


При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.

Вычисление потерь давления на местных сопротивлениях

Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.

Этап третий: увязка ответвлений

Когда проведены все необходимые расчёты необходимо произвести увязку нескольких ответвлений. Если система обслуживает один уровень, то увязывают ответвления не входящие в магистраль. Расчёт проводят в том же порядке, что и для основной линии. Результаты заносятся в таблицу. В многоэтажных зданиях для увязки используются поэтажные ответвления на промежуточных уровнях.

Критерии увязки

Здесь сопоставляются значения суммы потерь: давления по увязываемым отрезкам с параллельно присоединённой магистралью. Необходимо чтобы отклонение составляло не более 10 процентов. Если установлено, что расхождение больше, то увязку можно проводить:

  • путём подбора соответствующих размеров сечения воздуховодов;
  • при помощи установки на ответвлениях диафрагм или дроссельных клапанов.

Иногда для проведения подобных расчётов необходим всего лишь калькулятор и пара справочников. Если же требуется провести аэродинамический расчёт вентиляции больших зданий или производственных помещений, то понадобится соответствующая программа. Она позволит быстро определить размеры сечений, потери давления как на отдельных отрезках, так и во всей системе в целом.

http://www.youtube.com/watch?v=v6stIpWGDow Video can’t be loaded: Проектирование систем вентиляции. (http://www.youtube.com/watch?v=v6stIpWGDow)

Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции - воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.

Аэродинамический расчет начинают после определения кратности воздухообмена помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.

По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. D ст , А ст и В ст (справочная величина).

Пересчитывают фактические площадь сечения F факт и скорость v факт .

Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст * B ст ) / (A ст + B ст ), м.

Определяют величину критерия подобия Рейнольдса Re = 64100* D ст * v факт. Для прямоугольной формы D L = D ст .

Коэффициент трения λ тр = 0,3164 ⁄ Re-0,25 при Re≤60000, λ тр = 0,1266 ⁄ Re-0,167 при Re>60000.

Коэффициент местного сопротивления λм зависит от их типа, количества и выбирается из справочников.

Комментариев:

  • Исходные данные для вычислений
  • С чего начинать?
    • Порядок вычислений

Сердцем любой вентиляционной системы с механическим побуждением воздушного потока является вентилятор, который создает этот поток в воздуховодах. Мощность вентилятора напрямую зависит от напора, который необходимо создать на выходе из него, а для того, чтобы определить величину этого давления, требуется произвести расчет сопротивления всей системы каналов.

Для расчета потерь давления нужна схема и размеры воздуховода и дополнительного оборудования.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Вернуться к оглавлению

С чего начинать?

Диаграмма потери напора на каждый метр воздуховода.

Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.

Вернуться к оглавлению

Порядок вычислений

Общая формула расчета потерь давления в воздуховодах для всей вентиляционной системы выглядит следующим образом:

H B = ∑(Rl + Z), где:

  • H B – потери давления во всей системе воздуховодов, кгс/м²;
  • R – сопротивление трению 1 м воздухопровода эквивалентного сечения, кгс/м²;
  • l – протяженность участка, м;
  • Z – величина давления, теряемого воздушным потоком в местных сопротивлениях (фасонных элементах и дополнительном оборудовании).

Примечание: значение площади поперечного сечения воздуховода, участвующее в расчете, принимается изначально как для круглой формы канала. Сопротивление трению для каналов прямоугольной формы определяется по площади сечения, эквивалентному круглому.

Расчет начинают от самого отдаленного участка №1, затем переходят ко второму участку и так далее. Результаты вычислений по каждому участку складываются, о чем и говорит математический знак суммирования в расчетной формуле. Параметр R зависит от диаметра канала (d) и динамического давления в нем (Р д), а последнее, в свою очередь, зависит от скорости движения воздушного потока. Коэффициент абсолютной шероховатости стенок (λ) традиционно принимается как для воздухопровода из оцинкованной стали и составляет 0,1 мм:

R = (λ / d) Р д.

Пользоваться этой формулой в процессе расчета потерь давления не имеет смысла, так как значения R для различных скоростей воздуха и диаметров уже просчитаны и являются справочными величинами (Р. В. Щекин, И.Г. Староверов – справочники). Поэтому просто необходимо найти эти значения в соответствии с конкретными условиями перемещения воздушных масс и подставить их в формулу. Еще один показатель, динамическое давление Р д, который связан с параметром R и участвует в дальнейшем подсчете местных сопротивлений, тоже величина справочная. Учитывая эту связь между двумя параметрами, в справочных таблицах они приводятся совместно.

Значение Z потерь давления в местных сопротивлениях рассчитывают по формуле:

Z = ∑ξ Р д.

Знак суммирования обозначает, что нужно сложить результаты расчета по каждому из местных сопротивлений на заданном участке. Кроме уже известных параметров, в формуле присутствует коэффициент ξ. Его величина безразмерна и зависит от вида местного сопротивления. Значения параметра для многих элементов вентиляционных систем посчитаны либо определены опытным путем, поэтому находятся в справочной литературе. Коэффициенты местного сопротивления вентиляционного оборудования зачастую указывают сами производители, определив их значения опытным путем на производстве или в лаборатории.

Вычислив длину участка №1, количество и вид местных сопротивлений, следует правильно определить все параметры и подставить их в расчетные формулы. Получив результат, переходить ко второму участку и далее, до самого вентилятора. При этом не следует забывать о том участке воздухопровода, который расположен уже за вентиляционной установкой, ведь напора вентилятора должно хватить и на преодоление его сопротивления.

Закончив расчеты по самой протяженной ветви, производят такие же по соседней ветке, потом по следующей и так до самого конца. Обычно эти все ветви имеют много общих участков, поэтому вычисления пойдут быстрее. Целью определения потерь давления на всех ветвях есть их общая увязка, ведь вентилятор должен распределить свой расход равномерно по всей системе. То есть в идеале потери давления в одной ветви должны отличаться от другой не более чем на 10%. Простыми словами, это значит, что самое ближнее к вентилятору ответвление должно иметь самое высокое сопротивление, а дальнее – самое низкое. Если это не так, рекомендуется вернуться к пересчету диаметров воздуховодов и скоростей движения воздуха в них.

echo get_the_author_meta("display_name", $auhor); ?>