Химические и физические способы разделения смесей. Методы разделения и очистки веществ Характеристика способов разделения смесей


В случае если дисперсные частицы выделяются медленно из среды или необходимо предварительно осветлить неоднородную систему, используются такие методы как флокуляция, флотация, классификация, коагуляция и т.д.

Коагуляция - процесс слипания частиц в коллоидных системах (эмульсиях или суспензиях) с образованием агрегатов. Слипание происходит вследствие столкновения частиц при броуновском движении. Коагуляция относится к самопроизвольному процессу, который стремиться перейти в состояние, имеющее более низкую свободную энергию. Порог коагуляции - это минимальная концентрация введенного вещества, которое вызывает коагуляцию. Искусственно коагуляция может быть ускорена при добавлении в коллоидную систему специальных веществ - коагуляторов, а также приложением к системе электрического поля (электрокоагуляция), механическим воздействием (вибрация, перемешивание) и т.д.

При коагуляции достаточно часто добавляют в разделяемую неоднородную смесь химические вещества-коагулянты, которые разрушают сольватированные оболочки, уменьшая при этом диффузионную часть двойного электрического слоя, расположенного у поверхности частиц. Благодаря этому облегчается агломерация частиц и образование агрегатов. Таким образом, за счет образования более крупных фракций дисперсной фазы, происходит ускорение осаждения частиц. В качестве коагулянтов применяют соли железа, алюминия или соли других поливалентных металлов.

Пептизация - это процесс обратный коагуляции, представляющий собой распад агрегатов на первичные частицы. Пептизация осуществляется при помощи добавления веществ-пептизаторов в дисперсионную среду. Данный процесс способствует дезагрегированию веществ на первичные частицы. Веществами-пептизаторами могут быть поверхностно-активные вещеста (ПАВ) или электролиты, например, гуминовые кислоты или хлорное железо. Процесс пептизации используется для получения жидких дисперсных систем из паст или порошков.

В свою очередь флокуляция является разновидностью коагуляции. При данном процессе мелкие частицы, которые находятся во взвешенном состоянии в газовых или жидких средах, образуют хлопьевидные агрегаты, которые называются флокулами. В качестве флокулянтов применяются растворимые полимеры, например, полиэлектролиты. Вещества, образующие хлопья при флокуляции, могут быть легко удалены при помощи фильтрования или отстаивания. Флокуляция используется для подготовки воды и выделения ценных веществ из сточных вод, а также при обогащении полезных ископаемых. В случае водоочистки флокулянты используются в небольшой концентрации (от 0,1 до 5 мг/л).

Для того чтобы разрушить агрегаты в жидких системах, используются добавки, наводящие заряды на частицы, которые препятствуют их сближениям. Данного эффекта можно достигнуть и при изменении рН среды. Данный метод называется дефлокуляцией.

Флотация - процесс отделения твердых гидрофобных частиц от жидкой сплошой фазы путем их избирательного закрепления на границе раздела раздела жидкой и газообразной фаз (поверхность соприкосновения жидкости и газа или поверхность пузырьков в жидкой фазе) Образующаяся система из твердых частиц и газовых вклюцений удаляется с поверхности жидкой фазы. Данный процесс применяется не только для того, чтобы удалять частицы дисперсной фазы, но также и для раздения разных частиц вследствие различия их смачиваемости. При данном процессе гидрофобные частицы закрепляются на границе раздела фаз и отделяются от гидрофильных частиц, оседающих на дно. Наилучшие результаты флотации возникают в том случае, когда размер частиц составляет от 0,1 до 0,04 мм.

Флотация бывает нескольких видов: пенная, масляная, пленочная и т.д. Наиболее распространенной является пенная флотация. Данный процесс позволяет выносить частицы, обработанные реагентами, на поверхность воды при помощи пузырьков воздуха. Это позволяет образовывать пенный слой, устойчивость которого регулируется при помощи пенообразователя.

Классификация используется в аппаратах переменного сечения. С ее помщью возможно отделение определенного количества мелких частиц от основного продукта, состоящего из крупных частиц. Классификация выполняется при помощи центрифуг и гидроциклонов благодаря воздействию центробежной силы.

Разделение суспензий при помощи магнитной обработки системы является очень перспективным методом. Вода, которая обработана в магнитном поле, длительное время сохраняет измененные свойства, например, пониженную смачивающую способность. Данный процесс позволяет интенсифицировать разделение суспензий.

Материал урока содержит сведения о различных способах разделения смесей и очистки веществ. Вы научитесь использовать знания о различиях свойств компонентов смеси для выбора оптимального метода разделения данной смеси.

Тема: Первоначальные химические представления

Урок: Методы разделения смесей и очистки веществ

Определим различие между «методами разделения смесей» и «методами очистки веществ». В первом случае важно получить в чистом виде все составляющие смесь компоненты. При очистке вещества получением в чистом виде примесей, как правило, пренебрегают.

ОТСТАИВАНИЕ

Как разделить смесь, состоящую из песка и глины? Это одна из стадий в керамическом производстве (например, в производстве кирпичей). Для разделения такой смеси используют метод отстаивание. Смесь помещают в воду и перемешивают. Глина и песок с разной скоростью оседают в воде. Поэтому песок осядет значительно быстрее глины (Рис.1).

Рис. 1. Разделение смеси глины и песка методом отстаивания

Метод отстаивания используют также для разделения смесей нерастворимых в воде твердых веществ с разной плотностью. Например, так можно разделить смесь железных и древесных опилок (древесные опилки в воде всплывут, а железные осядут).

Смесь растительного масла и воды тоже можно разделить методом отстаивания, т.к масло не растворяется в воде и имеет меньшую плотность (Рис. 2). Таким образом, отстаиванием можно разделять смеси нерастворимых друг в друге жидкостей с различной плотностью.

Рис. 2. Разделение смеси растительного масла и воды методом отстаивания

Для разделения смеси поваренной соли и речного песка можно воспользоваться методом отстаивания (при смешении с водой соль растворится, песок осядет), но надежнее будет отделить песок от раствора соли другим методом – методом фильтрования.

Фильтрование данной смеси можно провести с помощью бумажного фильтра и воронки, опущенной в стакан. Крупинки песка остаются на фильтровальной бумаге, а прозрачный раствор поваренной соли проходит через фильтр. В данном случае речной песок – это осадок, а раствор соли – фильтрат (Рис. 3).

Рис. 3. Использование метода фильтрования для отделения речного песка от раствора соли

Фильтрование можно проводить не только с помощью фильтровальной бумаги, но и с использованием других пористых или сыпучих материалов. Например, к сыпучим материалам относится кварцевый песок, а к пористым – стекловата и обожженная глина.

Некоторые смеси можно разделить с помощью метода «горячее фильтрование». Например, смесь порошков серы и железа. Железо плавится при температуре более 1500 С, а сера – около 120 С. Расплавленную серу можно отделить от порошка железа с помощью подогреваемой стекловаты.

Выделить соль из фильтрата можно с помощью выпаривания, т.е. нагреть смесь и вода испарится, а соль останется на фарфоровой чашке. Иногда применяют упаривание, частичное испарение воды. В результате образуется более концентрированный раствор, при охлаждении которого растворенное вещество выделяется в виде кристаллов.

Если в смеси присутствует вещество, способное к намагничиванию, то его легко выделить в чистом виде с помощью магнита. Например, так можно разделить смесь порошков серы и железа.

Эту же смесь можно разделить еще одним методом, используя знание о смачиваемости компонентов смеси водой. Железо смачивается водой, т.е. вода растекается по поверхности железа. Сера же водой не смачивается. Если поместить в воду кусок серы, то он утонет, т.к. плотность серы больше плотности воды. А вот порошок серы всплывет, т.к. к несмачивающимся водой крупинкам серы прилипают пузырьки воздуха и выталкивают их на поверхность. Для разделения смеси нужно поместить ее в воду. Порошок серы всплывет, а железо утонет (Рис. 4).

Рис. 4. Разделение смеси порошков серы и железа методом флотации

Метод разделения смесей, основанный на различии смачиваемости компонентов, называется флотацией (франц. flotter – плавать). Рассмотрим еще несколько методов разделения и очистки веществ.

Один из древнейших методов разделения смесей – перегонка (или дистилляция). С помощью этого метода можно разделять компоненты, растворимые друг в друге, имеющие разные температуры кипения. Именно таким способом получают дистиллированную воду. Воду с примесями кипятят в одном сосуде. Образующиеся водяные пары конденсируются при охлаждении в другом сосуде в виде уже дистиллированной (чистой) воды.

Рис. 5. Получение дистиллированной воды

Близкие по свойствам компоненты можно разделить с помощью метода хроматографии. Этот способ основан на различном поглощении разделяемых веществ поверхностью другого вещества.

Например, красные чернила можно разделить на компоненты (воду и красящее вещество) посредством хроматографии.

Рис. 6. Разделение красных чернил методом бумажной хроматографии

В химических лабораториях хроматографию осуществляют с помощью специальных приборов – хроматографов, основные части которого – хроматографическая колонка и детектор.

Для очистки некоторых веществ в химии широко используется адсорбция. Это накопление одного вещества на поверхности другого вещества. К адсорбентам относится, например, активированный уголь.

Попробуйте опустить таблетку активированного угля в сосуд с подкрашенной водой, перемешайте, отфильтруйте и увидите, что фильтрат стал бесцветным. Атомы угля притягивают к себе молекулы, в данном случае, красителя.

В настоящее время адсорбция широко применяется для очистки воды и воздуха. Например, фильтры для очистки воды содержат в качестве адсорбента активированный уголь.

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006.

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.10-11)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§4)

4. Химия: неорг. химия: учеб. для 8 кл. общеобр. учреждений / Г.Е. Рудзитис, ФюГю Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§2)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

Из учебника П.А. Оржековского и др. «Химия, 8 класс» с. 33 №№ 2,4,6,Т.

Чистые вещества и смеси. Способы разделения смесей .

Для того чтобы установить свойства вещества, нужно иметь его в чистом виде, но в чистом виде вещества в природе не встречаются. Каждое вещество всегда содержит определенное количество примесей. Вещество, в котором почти нет примесей, называют чистым. С такими веществами работают в научной лаборатории, школьном химическом кабинете. Заметим, что абсолютно чистых веществ не существует.

Смесями являются почти все природные вещества, продукты питания (кроме соли, сахара, некоторых других), строительные материалы, товары бытовой химии, многие лекарственные и косметические средства.

Природные вещества представляют смеси, состоящие иногда из очень большого числа различных веществ. Так, например, природная вода всегда содержит растворенные в ней соли и газы. Иногда очень малое содержание примеси может привести к очень сильному изменению некоторых свойств вещества. Например, содержание в цинке лишь сотых долей железа или меди ускоряет его взаимодействие с соляной кислотой в сотни раз. Когда одно из веществ находится в смеси в преобладающем количестве, вся смесь обычно носит его название.


  • Компонент – это каждое вещество, содержащееся в смеси.
Чистое вещество всегда однородно, смеси же могут быть однородными и неоднородными .

Однородные смеси.

Добавим небольшую порцию сахара в стакан с водой и будем перемешивать, пока весь сахар не растворится. Жидкость будет иметь сладкий вкус. Таким образом, сахар не исчез, а остался в смеси. Но его кристалликов мы не увидим, даже рассматривая каплю жидкости в мощный микроскоп.

Рис. 3. Однородная смесь (водный раствор сахара)

Приготовленная смесь сахара и воды является однородной (рис. 3); в ней равномерно перемешаны мельчайшие частицы этих веществ.


  • Смеси, в которых компоненты невозможно обнаружить вооруженным глазом называют однородными.
Большинство металлических сплавов - также однородные смеси. Например, в сплаве золота с медью (его используют для изготовления ювелирных украшений) отсутствуют красные частицы меди и желтые частицы золота.

Вода в смеси с песком, мелом или глиной замерзает при температуре О 0 C и закипает при 100 0 С.

Некоторые виды неоднородных смесей имеют специальные названия: пена (например, пенопласт, мыльная пена), суспензия (смесь воды с небольшим количеством муки), эмульсия (молоко, хорошо взболтанные растительное масло с водой), аэрозоль (дым, туман).



Рис. 5. Неоднородные смеси:
а - смесь воды и серы;
б - смесь растительного масла и воды;
в - смесь воздуха и воды

Существуют разные способы разделения смесей. На выбор способа разделения смеси влияют свойства веществ, образующих данную смесь.



Рассмотрим подробнее каждый метод:


  • Отстаивание - распространённый способ очистки или жидкостей от нерастворимых в воде механических примесей, или жидких веществ, нерастворимых друг в друге, имеющих разную плотность.
Представьте, что перед вами смесь растительного масла и воды. Определите тип смеси. (неоднородная ). Сравните физические свойства масла и воды. (Это жидкости вещества, нерастворимые друг в друге, имеющие разную плотность). Предложите способ разделения данной смеси (отстаивание ). Его осуществляют с помощью делительной воронки .

Отстаивание используют при подготовке воды для технологических и бытовых нужд, обработке канализационных стоков, обезвоживании и обессоливании сырой нефти, во многих процессах химической технологии. Оно является важным этапом в естественном самоочищении природных и искусственных водоёмов.


  • Фильтрование – отделение жидкости от твёрдых нерастворимых в ней примесей; молекулы жидкости проходят через поры фильтра, а крупные частицы примесей задерживаются.
Фильтрование можно производить не только с помощью бумажного фильтра. Для фильтрования можно использовать и другие сыпучие или пористые материалы. К сыпучим материалам, используемым при данном методе, относится, например, кварцевый песок. А к пористым – обожженная глина и стекловата.

Представьте, что перед вами смесь речного песка и воды. Определите тип смеси. (неоднородная ). Сравните физические свойства речного песка и воды. (Это вещества, нерастворимые друг в друге, имеющие разную плотность). Предложите способ разделения данной смеси (фильтрования ).


  • Действие магнитом – это способ разделения неоднородных смесей, когда одно из веществ смеси способно притягиваться магнитом
Представьте, что перед вами смесь смесь железа и серы. Определите тип смеси. (неоднородная ). Сравните физические свойства железа и серы. Эту смесь можно разделить отстаиванием , так как сера и железо - твёрдые вещества, не растворимые в воде. Если высыпать эту смесь в воду сера всплывёт на поверхность, а железо утонет. Также эту смесь можно разделить с помощью магнита , так как железо притягивается магнитом, а сера нет.

  • Выпаривание – это способ разделения однородных смесей , при этом происходит выделение твердого растворимого вещества из раствора, при нагревании вода испаряется, а кристаллы твёрдого вещества остаются.
Представьте, что перед вами смесь поваренной соли и воды. Определите тип смеси. (однородная ). Эту смесь можно разделить выпариванием , так как при кипячении вода испаряется, а поваренная соль остается в чашке для.

  • Дистилляция (латинского означает «стекание каплями») это способ разделения однородных смесей, при этом происходит разделение жидких смесей на отличающиеся по составу фракции. Осуществляется путем частичного испарения жидкости с последующей конденсацией пара . Отогнанная фракция (дистиллят) обогащена относительно более летучими (низкокипящими) веществами, а неотогнанная жидкость (кубовый остаток) обогащена относительно менее летучими (высококипящими) веществами.
Дистилляция позволяет очистить природную воду от примесей. Полученную чистую (дистиллированную) воду используют в научно-исследовательских лабораториях, в производстве веществ для современной техники, в медицине для приготовления лекарств.

В лаборатории перегонку осуществляют на специальной установке (рис. 6). При нагревании смеси жидкостей сначала закипает вещество с наиболее низкой температурой кипения. Его пар выходит из сосуда, охлаждается, конденсируется1, и образовавшаяся жидкость стекает в приемник. Когда этого вещества уже не будет в смеси, температура начнет повышаться, и со временем закипает другой жидкий компонент. Нелетучие жидкости остаются в сосуде.


Рис. 6. Лабораторная установка для перегонки: а - обычная; б - упрощенная
1 - смесь жидкостей с разными температурами кипения;
2 - термометр;
3 - водяной холодильник;
4 - приемник

Рассмотрим, как используют некоторые методы разделения смесей.

Процесс фильтрования лежит в основе работы респиратора - устройства, которое защищает легкие человека, работающего в сильно запыленном помещении. В респираторе имеются фильтры, препятствующие попаданию пыли в легкие (рис. 7). Простейший респиратор - повязка из нескольких слоев марли. Фильтр, извлекающий пыль из воздуха, есть и в пылесосе.

Рис. 7. Рабочий в распираторе

Сделайте вывод, какими методами можно разделить смесь растворимого и нерастворимого в воде веществ.

Теоретический блок.

Определение понятия «смесь» было дано в XVII в. английским ученым Робертом Бойлем : «Смесь – целостная система, состоящая из разнородных компонентов».

Сравнительная характеристика смеси и чистого вещества

Признаки сравнения

Чистое вещество

Смесь

Постоянный

Непостоянный

Вещества

Одно и то же

Различные

Физические свойства

Постоянные

Непостоянные

Изменение энергии при образовании

Происходит

Не происходит

Разделение

С помощью химических реакций

Физическими методами

Смеси отличаются друг от друга по внешнему виду.

Классификация смесей показана в таблице:

Приведём примеры суспензий (речной песок + вода), эмульсий (растительное масло + вода) и растворов (воздух в колбе, поваренная соль + вода, разменная монета: алюминий + медь или никель + медь).

Способы разделения смесей

В природе вещества существуют в виде смесей. Для лабораторных исследований, промышленных производств, для нужд фармакологии и медицины нужны чистые вещества.

Для очистки веществ применяются различные способы разделения смесей

Выпаривание - выделение растворенных в жидкости твердых веществ способом ее превращения в пар.

Дистилляция- перегонка, разделение содержащихся в жидких смесях веществ по температурам кипения с последующим охлаждением пара.

В природе вода в чистом виде (без солей) не встречается. Океаническая, морская, речная, колодезная и родниковая вода – это разновидности растворов солей в воде. Однако часто людям необходима чистая вода, не содержащая солей (используется в двигателях автомобилей; в химическом производстве для получения различных растворов и веществ; при изготовлении фотографий). Такую воду называют дистиллированной, а способ ее получения – дистилляцией.


Фильтрование- процеживание жидкостей (газов) через фильтр с целью их очистки от твердых примесей.

Эти способы основаны на различиях в физических свойствах компонентов смеси.

Рассмотрим способы разделения гетерогенных и гомогенных смесей .

Пример смеси

Способ разделения

Суспензия – смесь речного песка с водой

Отстаивание

Разделение отстаиванием основано на различных плотностях веществ. Более тяжелый песок оседает на дно. Так же можно разделить и эмульсию: отделить нефть или растительное масло от воды. В лаборатории это можно сделать с помощью делительной воронки. Нефть или растительное масло образует верхний, более легкий слой. В результате отстаивания выпадает роса из тумана, осаждается сажа из дыма, отстаиваются сливки в молоке.

Разделение смеси воды и растительного масла отстаиванием

Смесь песка и поваренной соли в воде

Фильтрование

На чем основано разделение гетерогенных смесей с помощью фильтрования ?На различной растворимости веществ в воде и на различных размерах частиц. Через поры фильтра проходят лишь соизмеримые с ними частицы веществ, в то время как более крупные частицы задерживаются на фильтре. Так можно разделить гетерогенную смесь поваренной соли и речного песка. В качестве фильтров можно использовать различные пористые вещества: вату, уголь, обожженную глину, прессованное стекло и другие. Способ фильтрования – это основа работы бытовой техники , например пылесосов. Его используют хирурги – марлевые повязки; буровики и рабочие элеваторов – респираторные маски. С помощью чайного ситечка для фильтрования чаинок Остапу Бендеру – герою произведения Ильфа и Петрова – удалось забрать один из стульев у Эллочки Людоедки («Двенадцать стульев»).

Разделение смеси крахмала и воды фильтрованием

Смесь порошка железа и серы

Действие магнитом или водой

Порошок железа притягивался магнитом, а порошок серы – нет.

Несмачивающийся порошок серы всплывал на поверхность воды, а тяжелый смачивающийся порошок железа оседал на дно.

Разделение смеси серы и железа с помощью магнита и воды

Раствор соли в воде – гомогенная смесь

Выпаривание или кристаллизация

Вода испаряется, а в фарфоровой чашке остаются кристаллы соли. При выпаривании воды из озер Эльтон и Баскунчак получают поваренную соль. Этот способ разделения основан на различии в температурах кипения растворителя и растворенного вещества. Если вещество, например сахар, разлагается при нагревании, то воду испаряют неполностью – упаривают раствор, а затем из насыщенного раствора осаждают кристаллы сахара. Иногда требуется очистить от примесей растворители с меньшей температурой кипения, например воду от соли. В этом случае пары вещества необходимо собрать и затем сконденсировать при охлаждении. Такой способ разделения гомогенной смеси называется дистилляцией, или перегонкой . В специальных приборах – дистилляторах получают дистиллированную воду, которую используют для нужд фармакологии, лабораторий, систем охлаждения автомобилей. В домашних условиях можно сконструировать такой дистиллятор:

Если же разделять смесь спирта и воды, то первым будет отгоняться (собираться в пробирке-приемнике) спирт с tкип = 78 °С, а в пробирке останется вода. Перегонка используется для получения бензина, керосина, газойля из нефти.

Разделение однородных смесей

Особым методом разделения компонентов, основанным на различной поглощаемости их определенным веществом, является хроматография .

С помощью хроматографии русский ботаник впервые выделил хлорофилл из зеленых частей растений. В промышленности и лабораториях вместо фильтровальной бумаги для хроматографии используют крахмал, уголь, известняк, оксид алюминия. А всегда ли требуются вещества с одинаковой степенью очистки?

Для различных целей необходимы вещества с различной степенью очистки. Воду для приготовления пищи достаточно отстоять для удаления примесей и хлора, используемого для ее обеззараживания. Воду для питья нужно предварительно прокипятить. А в химических лабораториях для приготовления растворов и проведения опытов, в медицине необходима дистиллированная вода, максимально очищенная от растворенных в ней веществ. Особо чистые вещества, содержание примесей в которых не превышает одной миллионной процента, применяются в электронике, в полупроводниковой, ядерной технике и других точных отраслях промышленности.

Способы выражения состава смесей.

· Массовая доля компонента в смеси - отношение массы компонента к массе всей смеси. Обычно массовую долю выражают в %, но не обязательно.

ω [«омега»] = mкомпонента / mсмеси

· Мольная доля компонента в смеси - отношение числа моль (количества вещества) компонента к суммарному числу моль всех веществ в смеси. Например, если в смесь входят вещества А, В и С, то:

χ [«хи»] компонента А = nкомпонента А / (n(A) + n(B) + n(С))

· Мольное соотношение компонентов. Иногда в задачах для смеси указывается мольное соотношение её составляющих. Например:


nкомпонента А: nкомпонента В = 2: 3

· Объёмная доля компонента в смеси (только для газов) - отношение объёма вещества А к общему объёму всей газовой смеси.

φ [«фи»] = Vкомпонента / Vсмеси

Практический блок.

Рассмотрим три примера задач, в которых смеси металлов реагируют с соляной кислотой:

Пример 1. При действии на смесь меди и железа массой 20 г избытком соляной кислоты выделилось 5,6 л газа (н. у.). Определить массовые доли металлов в смеси.

В первом примере медь не реагирует с соляной кислотой, то есть водород выделяется при реакции кислоты с железом. Таким образом, зная объём водорода, мы сразу сможем найти количество и массу железа. И, соответственно, массовые доли веществ в смеси.

Решение примера 1.


n = V / Vm = 5,6 / 22,4 = 0,25 моль.

2. По уравнению реакции:

3. Количество железа тоже 0,25 моль. Можно найти его массу:
mFe = 0,25 56 = 14 г.

Ответ: 70% железа, 30% меди.

Пример 2. При действии на смесь алюминия и железа массой 11 г избытком соляной кислоты выделилось 8,96 л газа (н. у.). Определить массовые доли металлов в смеси.

Во втором примере в реакцию вступают оба металла. Здесь уже водород из кислоты выделяется в обеих реакциях. Поэтому прямым расчётом здесь нельзя воспользоваться. В таких случаях удобно решать с помощью очень простой системы уравнений, приняв за х - число моль одного из металлов, а за у - количество вещества второго.

Решение примера 2.

1. Находим количество водорода:
n = V / Vm = 8,96 / 22,4 = 0,4 моль.

2. Пусть количество алюминия - х моль, а железа у моль. Тогда можно выразить через х и у количество выделившегося водорода:

2HCl = FeCl2 +

4. Нам известно общее количество водорода: 0,4 моль. Значит,
1,5х + у = 0,4 (это первое уравнение в системе).

5. Для смеси металлов нужно выразить массы через количества веществ.
m = M n
Значит, масса алюминия
mAl = 27x,
масса железа
mFe = 56у,
а масса всей смеси
27х + 56у = 11 (это второе уравнение в системе).

6. Итак, мы имеем систему из двух уравнений:

7. Решать такие системы гораздо удобнее методом вычитания, домножив первое уравнение на 18:
27х + 18у = 7,2
и вычитая первое уравнение из второго:

8. (56 − 18)у = 11 − 7,2
у = 3,8 / 38 = 0,1 моль (Fe)
х = 0,2 моль (Al)

mFe = n M = 0,1 56 = 5,6 г
mAl = 0,2 27 = 5,4 г
ωFe = mFe / mсмеси = 5,6 / 11 = 0,50,91%),

соответственно,
ωAl = 100% − 50,91% = 49,09%

Ответ: 50,91% железа, 49,09% алюминия.

Пример 3. 16 г смеси цинка, алюминия и меди обработали избытком раствора соляной кислоты. При этом выделилось 5,6 л газа (н. у.) и не растворилось 5 г вещества. Определить массовые доли металлов в смеси.

В третьем примере два металла реагируют, а третий металл (медь) не вступает в реакцию. Поэтому остаток 5 г - это масса меди. Количества остальных двух металлов - цинка и алюминия (учтите, что их общая масса 16 − 5 = 11 г) можно найти с помощью системы уравнений, как в примере №2.

Ответ к Примеру 3: 56,25% цинка, 12,5% алюминия, 31,25% меди.

Пример 4. На смесь железа, алюминия и меди подействовали избытком холодной концентрированной серной кислоты. При этом часть смеси растворилась, и выделилось 5,6 л газа (н. у.). Оставшуюся смесь обработали избытком раствора едкого натра. Выделилось 3,36 л газа и осталось 3 г не растворившегося остатка. Определить массу и состав исходной смеси металлов.

В этом примере надо помнить, что холодная концентрированная серная кислота не реагирует с железом и алюминием (пассивация), но реагирует с медью. При этом выделяется оксид серы (IV).
Со щелочью реагирует только алюминий - амфотерный металл (кроме алюминия, в щелочах растворяются ещё цинк и олово, в горячей концентрированной щелочи - ещё можно растворить бериллий).

Решение примера 4.

1. С концентрированной серной кислотой реагирует только медь, число моль газа:
nSO2 = V / Vm = 5,6 / 22,4 = 0,25 моль

2H2SO4 (конц.) = CuSO4 +

2. (не забудьте, что такие реакции надо обязательно уравнивать с помощью электронного баланса)

3. Так как мольное соотношение меди и сернистого газа 1:1, то меди тоже 0,25 моль. Можно найти массу меди:
mCu = n M = 0,25 64 = 16 г.

4. В реакцию с раствором щелочи вступает алюминий, при этом образуется гидроксокомплекс алюминия и водород:
2Al + 2NaOH + 6H2O = 2Na + 3H2

Al0 − 3e = Al3+

5. Число моль водорода:
nH2 = 3,36 / 22,4 = 0,15 моль,
мольное соотношение алюминия и водорода 2:3 и, следовательно,
nAl = 0,15 / 1,5 = 0,1 моль.
Масса алюминия:
mAl = n M = 0,1 27= 2,7 г

6. Остаток - это железо, массой 3 г. Можно найти массу смеси:
mсмеси = 16 + 2,7 + 3 = 21,7 г.

7. Массовые доли металлов:

ωCu = mCu / mсмеси = 16 / 21,7 = 0,7,73%)
ωAl = 2,7 / 21,7 = 0,1,44%)
ωFe = 13,83%

Ответ: 73,73% меди, 12,44% алюминия, 13,83% железа.

Пример 5. 21,1 г смеси цинка и алюминия растворили в 565 мл раствора азотной кислоты, содержащего 20 мас. % НNО3 и имеющего плотность 1,115 г/мл. Объем выделившегося газа, являющегося простым веществом и единственным продуктом восстановления азотной кислоты, составил 2,912 л (н. у.). Определите состав полученного раствора в массовых процентах. (РХТУ)

В тексте этой задачи чётко указан продукт восстановления азота - «простое вещество». Так как азотная кислота с металлами не даёт водорода, то это - азот. Оба металла растворились в кислоте.
В задаче спрашивается не состав исходной смеси металлов, а состав получившегося после реакций раствора. Это делает задачу более сложной.

Решение примера 5.

1. Определяем количество вещества газа:
nN2 = V / Vm = 2,912 / 22,4 = 0,13 моль.

2. Определяем массу раствора азотной кислоты, массу и количество вещества растворенной HNO3:

mраствора = ρ V = 1,115 565 = 630,3 г
mHNO3 = ω mраствора = 0,2 630,3 = 126,06 г
nHNO3 = m / M = 126,06 / 63 = 2 моль

Обратите внимание, что так как металлы полностью растворились, значит - кислоты точно хватило (с водой эти металлы не реагируют). Соответственно, надо будет проверить, не оказалась ли кислота в избытке , и сколько ее осталось после реакции в полученном растворе.

3. Составляем уравнения реакций (не забудьте про электронный баланс ) и, для удобства расчетов, принимаем за 5х - количество цинка, а за 10у - количество алюминия. Тогда, в соответствии с коэффициентами в уравнениях, азота в первой реакции получится х моль, а во второй - 3у моль:

12HNO3 = 5Zn(NO3)2 +

Zn0 − 2e = Zn2+

36HNO3 = 10Al(NO3)3 +

Al0 − 3e = Al3+

5. Тогда, учитывая, что масса смеси металлов 21,1 г, их молярные массы - 65 г/моль у цинка и 27 г/моль у алюминия, получим следующую систему уравнений:

6. Решать эту систему удобно, домножив первое уравнение на 90 и вычитая первое уравнение их второго.

7. х = 0,04, значит, nZn = 0,04 5 = 0,2 моль
у = 0,03, значит, nAl = 0,03 10 = 0,3 моль

8. Проверим массу смеси:
0,2 65 + 0,3 27 = 21,1 г.

9. Теперь переходим к составу раствора. Удобно будет переписать реакции ещё раз и записать над реакциями количества всех прореагировавших и образовавшихся веществ (кроме воды):

10. Следующий вопрос: осталась ли в растворе азотная кислота и сколько её осталось?
По уравнениям реакций, количество кислоты, вступившей в реакцию:
nHNO3 = 0,48 + 1,08 = 1,56 моль,
т. е. кислота была в избытке и можно вычислить её остаток в растворе:
nHNO3ост. = 2 − 1,56 = 0,44 моль.

11. Итак, в итоговом растворе содержатся:

нитрат цинка в количестве 0,2 моль:
mZn(NO3)2 = n M = 0,2 189 = 37,8 г
нитрат алюминия в количестве 0,3 моль:
mAl(NO3)3 = n M = 0,3 213 = 63,9 г
избыток азотной кислоты в количестве 0,44 моль:
mHNO3ост. = n M = 0,44 63 = 27,72 г

12. Какова масса итогового раствора?
Вспомним, что масса итогового раствора складывается из тех компонентов, которые мы смешивали (растворы и вещества) минус те продукты реакции, которые ушли из раствора (осадки и газы):

13.
Тогда для нашей задачи:

14. mнов. раствора = масса раствора кислоты + масса сплава металлов - масса азота
mN2 = n M = 28 (0,03 + 0,09) = 3,36 г
mнов. раствора = 630,3 + 21,1 − 3,36 = 648,04 г

ωZn(NO3)2 = mв-ва / mр-ра = 37,8 / 648,04 = 0,0583
ωAl(NO3)3 = mв-ва / mр-ра = 63,9 / 648,04 = 0,0986
ωHNO3ост. = mв-ва / mр-ра = 27,72 / 648,04 = 0,0428

Ответ: 5,83% нитрата цинка, 9,86% нитрата алюминия, 4,28% азотной кислоты.

Пример 6. При обработке 17,4 г смеси меди, железа и алюминия избытком концентрированной азотной кислоты выделилось 4,48 л газа (н. у.), а при действии на эту смесь такой же массы избытка хлороводородной кислоты - 8,96 л газа (н. у.). Определите состав исходной смеси. (РХТУ)

При решении этой задачи надо вспомнить, во-первых, что концентрированная азотная кислота с неактивным металлом (медь) даёт NO2, а железо и алюминий с ней не реагируют. Соляная кислота, напротив, не реагирует с медью.

Ответ к примеру 6: 36,8% меди, 32,2% железа, 31% алюминия.

Задачи для самостоятельного решения.

1. Несложные задачи с двумя компонентами смеси.

1-1. Смесь меди и алюминия массой 20 г обработали 96 %-ным раствором азотной кислоты, при этом выделилось 8,96 л газа (н. у.). Определить массовую долю алюминия в смеси.

1-2. Смесь меди и цинка массой 10 г обработали концентрированным раствором щелочи. При этом выделилось 2,24 л газа (н. y.). Вычислите массовую долю цинка в исходной смеси.

1-3. Смесь магния и оксида магния массой 6,4 г обработали достаточным количеством разбавленной серной кислоты. При этом выделилось 2,24 л газа (н. у.). Найти массовую долю магния в смеси.

1-4. Смесь цинка и оксида цинка массой 3,08 г растворили в разбавленной серной кислоте. Получили сульфат цинка массой 6,44 г. Вычислите массовую долю цинка в исходной смеси.

1-5. При действии смеси порошков железа и цинка массой 9,3 г на избыток раствора хлорида меди (II) образовалось 9,6 г меди. Определите состав исходной смеси.

1-6. Какая масса 20%-ного раствора соляной кислоты потребуется для полного растворения 20 г смеси цинка с оксидом цинка, если при этом выделился водород объемом 4,48 л (н. у.)?

1-7. При растворении в разбавленной азотной кислоте 3,04 г смеси железа и меди выделяется оксид азота (II) объемом 0,896 л (н. у.). Определите состав исходной смеси.

1-8. При растворении 1,11 г смеси железных и алюминиевых опилок в 16%-ном растворе соляной кислоты (ρ = 1,09 г/мл) выделилось 0,672 л водорода (н. у.). Найдите массовые доли металлов в смеси и определите объем израсходованной соляной кислоты.

2. Задачи более сложные.

2-1. Смесь кальция и алюминия массой 18,8 г прокалили без доступа воздуха с избытком порошка графита. Продукт реакции обработали разбавленной соляной кислотой, при этом выделилось 11,2 л газа (н. у.). Определите массовые доли металлов в смеси.

2-2. Для растворения 1,26 г сплава магния с алюминием использовано 35 мл 19,6%-ного раствора серной кислоты (ρ = 1,1 г/мл). Избыток кислоты вступил в реакцию с 28,6 мл раствора гидрокарбоната калия с концентрацией 1,4 моль/л. Определите массовые доли металлов в сплаве и объем газа (н. у.), выделившегося при растворения сплава.

Смеси можно разделять разными способа-ми, среди которых наиболее распространён-ными являются отстаивание, фильтрование, выпаривание.

Отстаивание. Отстаиванием разделяют сме-си, компоненты которых легко отделяются, например смесь крахмала и воды (рис. 25, а).

Вскоре после приготовления смеси мы видим, что крахмал оседает на дно (рис. 25, б), поскольку он нерастворим и тяжелее воды. Слой воды располагается над крахмалом. На рис. 25, в показано, как эту смесь разделяют, аккуратно сливая воду.

Однако полного разделения компонентов смеси отстаиванием не произойдёт. Часть воды остаётся с крахмалом либо часть крах-мала вместе с водой отделяется от смеси.

Проведём разделение смеси растительно-го масла и воды (рис. 26). Для разделения ис-пользуем лабораторное оборудование, которое называется делительная воронка. Как и в пер-вом случае, эти вещества не растворяются друг в друге, но растительное масло легче воды.

Смесь поместим в делительную воронку. Вскоре слой растительного масла располо-жится сверху над водой. Чётко видна линия раздела двух жидкостей. Поворотом крани-ка открывают в воронке отверстие, через ко-торое в стакан выливается вода. После выли-вания воды кран закрывают. Через верхнее отверстие воронки растительное масло сли-вают в отдельную посуду.

Отстаивание — один из способов разделения сме-сей. Компоненты смеси в результате отстаивания расслаиваются, поэтому их легко разделить.

Фильтрование. Для разделения смеси жидкости и нерастворимого в ней твёрдого вещества лучше использовать способ фильтрования.

Для проведения фильтрования понадобится до-полнительное оборудование — обычная воронка, фильтр, стеклянная палочка. Фильтры — это не-плотные пористые материалы, через которые про-сачивается жидкость, но не проникают частицы твёрдого компонента смеси. Такими свойствами обладают бумага, ткань, слой песка, вата.

Фильтрование — это способ разделения смеси пропусканием её через фильтры, способные задер-живать частицы одного из её компонентов.

На рис. 27 показано, как разделить смесь желез-ных опилок и воды фильтрованием. Смесь воды и опилок осторожно по стеклянной палочке, пристав-ленной сбоку воронки, как показано на рисунке, выливают на фильтр. Вода быстро проникает через имеющиеся в фильтре поры и стекает в посудину-приёмник. Видим, как в посудину-приёмник посту-пает прозрачная чистая вода. Размеры железных опилок больше, чем поры фильтра, поэтому оседают на нём.

Как и в предыдущих двух опытах, смеси удалось разделить, поскольку один компонент смеси не рас-творялся в другом.

Выпаривание. В природе и быту довольно много смесей, в которых частицы веществ настолько пере-мешаны и малых размеров, что ни отстаиванием, ни фильтрованием их не разделить. Например, смесь воды и поваренной соли проходит через фильтр полностью, ни один из её компонентов не остаётся на фильтре. Как разделить эту смесь? В данном слу-чае используют другой способ — выпаривание.

Выпаривание — это удаление при нагревании жидкого компонента смеси.

На рис. 28, а показано приготовление смеси по-варенной соли и воды, а также её разделение вы-париванием. Материал с сайта

При выпаривании вода испаряется и превраща-ется в водяной пар (рис. 28, б). На дне посудины, в которой проходило выпаривание, остаётся твёрдое вещество — поваренная соль (рис. 28, в).

Кроме рассмотренных, имеются и другие способы раз-деления смесей . Например, свойство веществ притяги-ваться к магниту. Этот способ разделения смесей можно использовать, если одно из веществ реагирует на действие магнита, а другое — нет.

Намагничивание свойственно железу и отсутствует у серы. Если к смеси этих веществ поднести магнит (это можно сделать через тонкий лист бумаги), то смесь разде-лится, железные опилки притянутся к магниту, потом его легко можно очистить от них.

Используя большие магниты на заводах по переработке металлов, железный лом отделяют от других компонентов.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • способы разделения смесей отстаивание
  • способы разделения смесей реферат