Как создать гравитацию в космосе и почему её нет на МКС? Что спасет нашу Вселенную от космического коллапса? Солнечная система состоит из девяти планет.


В условиях отсутствия у науки знаний о Космосе там лучше летать на метле

1. Введение

В то время, когда космические корабли бороздят бескрайние просторы расширяющейся Вселенной, когда каждый год открываются новые звезды, созвездия и даже спиртовые (!) Галактики, а также учитывая совершенство математического аппарата, используемого при расчетах, нет необходимости повторять азбучные истины.

Однако заметим, что в Космос нельзя соваться со свиным рылом, в Космосе летают не только “кирпичи”, т.е. метеориты, планеты, звезды, но и НЛО.

Кроме того, будет показано, что Космос – это не место для прогулок, а среда обитания, и не понимание смысла этой среды может испортить не только настроение.

Астрономия, как наука, развивается с того момента, когда у Гомо Цапус (человека с элементами мозга) отвалился хвост. Профессия астронома – это третья профессия на Земле, и весь груз знаний, полученный за всю историю развития человечества, в первую очередь касается Космоса. Земля последовательно (за это время) побывала на трех китах (слонах), вокруг Земли болтались разные непонятные светила. Можно было свесить ноги на краю Земли и потрогать эти светила руками. Затем Земля приобрела округлые формы, и сама стала бегать вокруг Солнца. На сегодня точно рассчитаны все параметры Земли, и всего того, что вокруг нее находится. Известно, что мы были все созданы из пылевого облака, и мозг Гомо Цапус – это отложения пыли в смеси с природными газами.

Рассматривая Космос не с точки зрения лошади Пржевальского (пояснения – в тексте констант), придем к выводу, что Астрономии, как науки, не существует , и все известные постулаты – мера пространства, время, скорость, вопросы существования Космоса, и в первую очередь – системы жизнеобеспечения, придется, хочется этого или нет, пересмотреть. Мы видим то, что видим – у кошки тоже есть представление о Космосе, но ее описание Космоса никого не интересует. Что означает эта фраза? То, что человек со зрением рассматривает Космос (и создает приборы) на базе собственного зрения, т.е. относительно той инструментальной базы, которую он получил.

Изменив смысл сказанного, можно добавить, что человек видит только то, что ему дано видеть. Известно, что Гомо Цапус – царь природы, и кроме того, он еще и подобен Богу. Но царь какой природы и какому Богу – все пока изложено в сказках.

Можно, конечно, задаваться вопросом – есть ли жизнь на Марксе (художник Блох), сколько воды на Луне, сколько лет нам еще нежиться под ласковым Солнцем и т.д.

Космический корабль “Мир” взлетает под рукоплескания центра Управления и мягко шлепается в Тихий Океан.

Что это – опять двигатели? Почему Земля не кувыркается при движении в Космосе, если ее центр тяжести находится в Южном полушарии? Все знания о Луне получены, конечно, из современных источников, в первую очередь у Козьмы Пруткова – зачем Луна днем, если днем и так светло. Почему с Земли видно 59 % поверхности Луны, не было выяснено даже после пребывания там астронавтов (фильм о посещении Луны был снят на Земле). Конечно, мы о Космосе знаем больше, чем о Земле, но опять же – на уровне лошади Пржевальского.

Изложенный материал позволяет по другому взглянуть на проблемы существования Гомо Цапус, подкорректировать мировоззрение и не выглядеть Дон Кихотом перед ветряными мельницами. Что такое Космос, как производится движение в нем, что такое атмосфера и как далеко она простирается, что такое Солнце? Сколько может быть планет в стандартной космической системе, почему некоторые планеты, например, Венера, вращается в обратном направлении и т.д.

Всё это изложено в монографии “Основы небесной механики”. Отдельные выдержки приводятся ниже.

Исходя из пылевого начала мозга, резонно предположить, что не существует других форм материи, все, что окружает нас, это материальные тела, некоторые из них можно пощупать, определить вес, температуру и т.д. Все материальные тела можно расположить в таблицу (Менделеева) согласно весовым параметрам. При этом учитывается, что наименьшая масса (кварк) тоже материальна – своего рода пылинка. На этой пылинке держится вся современная наука. Однако существует и шаровая молния, то есть не инерционная масса, а это – анахронизм, поэтому если где – либо и появится шаровая молния, ей место на электрической станции – обогревать воду для получения электроэнергии. Конечно, рассматривать современную энциклопедию по физике можно только на встречах КВН (клуба веселых и находчивых), а современные технические средства – на уровне подводных лодок Жюля Верна.

Концептуальная основа материала – дополнение к монографии “Холодный ядерный синтез”. Расчеты и сопроводительный материал дан только в исполнении к реальным физическим величинам, основания которых приведены в монографии.

2. Системы координат.

Астрономические системы координат.Направление движения северного полюса мира с 1600 г. по 2300 г.Звездное небо всегда рассматривалось только в определенной здесь системе координат. В Китае, правда, координатной сетки до XV века не было, пока ее не завезли туда из Европы. Координатная сетка всегда рассматривалась от текущей поверхности Земли, при конкретном значении гравитационной постоянной.
Горизонтальная система координат.А – направление видимого вращения звездного неба.В – Зенит, С – надир.h – Высота – дуга круга высоты от горизонта до светила.L – Азимут – дуга горизонта от точки юга до круга высоты светила (откладывается от 0 до 360 градусов в западном направлении).
Экваториальная система координат.А.Направление видимого вращения небесной сферы.В. Северный полюс мира.С. Точка осеннего равноденствия.Д. Точка весеннего равноденствия.Е. Южный полюс мира.

Сигма – склонение- дуга склонения от экватора до светила (от 0 до 90 0).

t – часовой угол- дуга экватора между местным меридианом и кругом склонения (от 0 до 24 ч в направлении А).

Альфа – прямое восхождение – дуга экватора от точки весеннего равноденствия до круга склонения светила (от 0 до 24 ч в направлении А).

Эллиптическая система координат.А – Направление видимого вращения небесной сферыВ – Северный полюс мираС – Южный полюс мираД – Точка осеннего равноденствияЕ – Точка весеннего равноденствия

F – Северный полюс эклиптики

G – Южный полюс эклиптики

Вета – эклиптическая (астрономическая) широта – дуга круга широты от эклиптики до светила (от 0 до (+/-) 90 0)

Лямбда – эклиптическая (астрономическая) долгота – дуга эклиптики от точки весеннего равноденствия до круга широты светила (отсчитывается от 0 до 360 0 в направлении видимого годичного движения Солнца)

(+/-) 90 0 – плюс относится к северу, минус – к югу от экватора и эклиптике соответственно.

Как видно из приведенных выше систем координат, используемых в астрономии, Земля, как и прежде (когда покоилась на трех китах) является центром мира.

Ось вращения Земли направлена на центр мира, т.е. на Полярную звезду. Однако следует заметить, что Земля двигается не в направлении к Полярной звезде, а Марс, Венера и другие планеты имеют свою Полярную звезду .

Отличительной особенностью выше приведенных систем координат является то, что использование их допустимо только в пространстве Евклида, когда любая координата прямолинейна, то есть нет при распространении прямых участков различной плотности или участков, изменяющих направление луча (глаза, прибора). Отметим, что это касается только органов ощущений человека.

Системы координат предполагают наличие равного значения ускорения силы тяжести в любой точке измерения (на Земле эти показания различны).

Системы координат могут быть использованы там, где есть равномерно распределенные массы. Считается, что Космос – это очень далеко, поэтому все системы координат рассчитаны на указание точечной массы. Предполагается, что Земля – это груда мусора, возникшая в результате переработки космической пыли, и систему координат можно использовать любым случайным образом, без учета реперных точек в Космосе и систем самой Земли.

3. Звездное небо

Гомо Цапус в состоянии рассмотреть внимательно звездное небо в течение суток, находясь на экваторе. Используя доступные средства наблюдения – глаза, телескоп, а также данные ему лошадью Пржевальского (см. система физических констант) системы измерения, он в состоянии произвести оценку использования Космоса в народнохозяйственных целях. Когда нет облаков, образовавшихся в результате испарения части водной поверхности Земли, нет Солнца и Луны, можно не только наблюдать отдельные галактики, звезды, планеты, кометы, метеориты, но и смело представить себе край Вселенной, где еще не ступала нога Гомо Цапус.

Вселенная – это вся окружающая нас часть материального мира, доступная наблюдению . Все остальное Вселенной не является и относится к недоразумению. Важнейшим постулатом является принцип, что фундаментальные законы природы (в частности, законы физики), установленные и проверенные в лабораторных экспериментах на Земле, остаются верными для всей Вселенной, и все явления, наблюдаемые во Вселенной, могут быть объяснены с помощью этих законов.

Базовая единица расстояния – парсек – это расстояние, с которого средний радиус Земной орбиты (1 астрономическая единица), перепендикулярный углу зрения Гомо Цапус, виден под углом 1 “ (секунду). 1 парсек (пс) = 206265 а.е. = 31*10 15 м.

Световой год = 0.3066 пс. Используются кило и мегапарсеки, диаметр нашей Галактики равен 25 кпс (килопарсек).

Используя эффект Допплера, по величине красного смещения установлено, что все Галактики от нас драпают, но скорость их драпания не превышает скорость света. Эти Галактики и не подозревают, что далеко не убежишь, они уже обвязаны сферой Хаббла. Вселенная – это достаточно молодое образование – не более 13 млрд лет (немного раньше потопа на Земле), радиус Вселенной – 4*10 28 см. Дальше всех от нас убежали квазары – более чем на 1.67*10 28 см. Бегство от нас – хаотичное, при этом звезды могут даже сталкиваться и наступать друг другу на пятки.

Как и в среде обитания Гомо Цапус, Вселенная состоит из газа, пыли (межзвездной, а не комнатной) и достаточно плотных сгустков из ценных минералов. Используя рычаг Архимеда и последние достижения науки в области метрологии, удалось взвесить особо ценные звезды. Атомные ядра и нейтронные звезды имеют плотность до 10 14 г/см 3 , планеты и звезды малоценные (общей последовательности) -

1 г/см 3 , Галактика имеет плотность 10 -24 г/см 3 . Кроме того, удалось скрыть от Гомо Цапус некоторую часть массы (скрытая масса Вселенной), которая почему-то не светится. Есть предположение, что возраст Вселенной больше возраста Земли, но это только догадки. Химически Вселенная состоит из водорода Н, гелия 4 Не с малой примесью 2 Н, 3 Не и Li. Путем их перемешивания оных была получена таблица Менделеева. Малая доля антипротонов в космических лучах подтверждает версию, что основой Вселенной являются протонные атомы, т.е. вещество преобладает над антивеществом. Вселенная заполнена электромагнитным излучением с чернотельным спектром и температурой Т = 2.7 К. Это излучение осталось от ранних стадий эволюции Вселенной и не может принадлежать звездам, поэтому и названо реликтовым. Реликтовое излучение анизотропно – его температура не зависит от направления. Наблюдаются сезонные вариации дипольной анизотропии, соответствующие изменению скорости (+/-) 30 км/сек, которые вызваны вращением Земли вокруг Солнца (что дает новое “космологическое” доказательство правильности гелиоцентрической системы Коперника).

Из прошлого Вселенной можно выделить следующее:

Гравитационное взаимодействие является единственным, которое не экранируется и не насыщается (а наоборот, усиливается) с увеличением количества вещества, поэтому оно доминирует над другими взаимодействиями в достаточно больших масштабах. Из разных моделей следует один вывод – Вселенная была однородной и меньших масштабов.

Начальную стадию расширения Вселенной, когда плотности энергии и излучения, а также температура были высоки, называют иногда Большим взрывом, то есть вся масса Вселенной вместе с газами, пылью, звездами, излучениями, была собрана в точку и после получения пинка эта точка взорвалась. С Земли до сих пор можно наблюдать итоги развития Вселенной. Предполагается, что галактикам надоест жить самостоятельно, убегая от Земли, и через 20 млрд. лет они повернут обратно, чтобы придти к исходной форме – к точке (с Земли этот будет хорошо видно). Различают сильный и слабый варианты антропологического принципа в космологии. Суть первого из них заключается в том, что наше положение во Вселенной (как во времени, так и в пространстве) все же является привилигированным в том смысле, что оно должно быть совместимым с нашим существованием в качестве наблюдателя. Слабый антропологический принцип позволяет делать конкретные и проверяемые предсказания. Например, современный возраст Вселенной можно приближенно предсказать до измерения постоянной Хаббла, если учесть, что существование жизни на Земле связано с притоком энергии от Солнца, в время жизни Солнца как типичной звезды равно 10 10 лет. Согласно сильному антропологическому принципу, сама Вселенная, законы физики (построенные на базе констант лошади Пржевальского), которыми она управляется, и ее фундаментальные параметры должны быть такими, чтобы в ней на некотором этапе эволюции допускалось существование наблюдателя (Гомо Цапус). Это означает, что если не будет нового потопа, мы сможем наблюдать новый Большой взрыв и с помощью современных технических достижений корректировать развитие новой Вселенной в нужном для народного хозяйства направлении. Второе начало термодинамики гласит: процесс, при котором не происходит никаких изменений, кроме передачи тепла от горячего тела к холодному, необратим, т.е. теплота не может переходить самопроизвольно от холодного тела к горячему (принцип Клаузиуса). Для равновесного процесса есть полный дифференциал функции состояния S, названный энропией . При необратимых процессах энтропия только возрастает, при обратимых остается неизменной. Применяя второй закон термодинамики к замкнутой Вселенной, то получим вывод о “тепловой смерти Вселенной”. Но в эволюции Вселенной существенную роль играет тяготение, которое не принималось во внимание, и если будет найден гравитон , и его удастся обуздать Карно-циклом, тогда время и пространство могут существенно измениться.

Одной из особенностью Вселенной является вакуум. Его можно получить и на Земле, а так как вакуум – это среда, содержащая газ при давлениях, существенно ниже атмосферного, то нет никаких данных, что это такое. Хотя представление о вакууме стало неотъемлемой частью современных теорий, существуют основания полагать, что включение в рассмотрение гравитации приводит к серьезной проблеме. Согласно принципу эквивалентности, энергия вакуума гравитирует и входит поэтому в уравнения общей теории относительности. Ограничение же на плотность энергии вакуума, которое получается из опыта, оказывается на много порядков (примерно в 10 46 раз) меньше энергии, связанной, например, с глюонным конденсатом. Механизм уменьшения плотности энергии вакуума неизвестен.

Область астрономии, изучающая строение, устойчивость и эволюцию звездных систем – это звездная динамика. Объекты изучения – шаровые и рассеянные звездные скопления внутри галактик, галактики в целом, в также скопления галактик. Выведены соотношения, учитывающие самосогласованное (на совещании между звездами) поле тяготения, столновения отдельных звезд в борьбе за пространство и при бегстве из галактики (столкновительные члены уравнения – интеграла столкновений). При гравитационной неустойчивости развиваются спиральные галактики. Звезда может испариться, то есть незаметно исчезнуть из галактики. Испарение звезд является основным фактором, определяющим эволюцию шаровых скоплений. При числе звезд больше определенного значения, в результате столкновительной эволюции скопление может сжаться (от страха) на столько, что его размер приблизится к гравитационному радиусу, а это приведет к гравитационному коллапсу. Таким образом образуются и черные дыры. Это особенно важно тем, кто будет путешествовать между такими звездами – Вас могут не распознать и вовлечь в образование черной дыры.

Звезды имеют атмосферу, электромагнитное излучение которой без последующего переизлучения со слезами покидает звезду в поисках пристанища. Измерены температуры звезд, составлены каталоги и рекомендации, какие звезды в какое время года можно посещать. Звезды нормируются по спектру (см. константы лошади Пржевальского). Каждая звезда старается создать ветер (звездный ветер), который может сдуть Вас при путешествии в иную галактику. Скорость ветра – до тысяч км/сек.

Иногда в Космосе можно наблюдать стриптиз – звезда сбрасывает оболочку и превращается в нейтронную.

Выводы. Так как Земля – база Гомо Цапус, и исходная точка любых наблюдений и путешествий, необходимо ответить на ряд вопросов:

1. Вселенная расширяется, а плотность энергии вакуума остается неизменной.

2. Что такое вакуум, науке пока не ясно.

3. В каком направлении лучше двигаться, чтобы не заблудиться, это предмет рассмотрения в следующих разделах.

4. Какие принципы движения лучше использовать и сколько щук с собой брать?

5. Что делать, если нарвешься на сбежавшую звезду.

6. Какова техника безопасности при попадании в черную дыру?

А также на массу других вопросов, и после получения ответов можно смело готовиться к путешествию.

В монографии “Основы небесной механики” (824 страницы) изложен материал:

Введение
Системы координат, принятые в Астрономии
Солнечная система. Образование, движение, энергетические параметры
Звездное небо с Земли и с реперов Космоса
Расчет орбит по трубкам связи
Система физических констант неинерционной массы
Вводный курс или азбука Космоса
Константы Космоса
Правоспиральные системы в Космосе
Левоспиральные системы в Космосе
Понятие пространство – время
Альбедо и расчет баланса Космического тела
Ориентация и единая система координат относительно реперов Космоса
Решетки Космоса и структуры решеток планет
Принципы движения НЛО
Инерционные и не инерционные массы, законы Максима
Ноосфера планеты – назначение и структура. Ноосфера на Марсе
Системы жизнеобеспечения, переходные состояния живой клетки
Условия неограниченного передвижения в Космосе
Заключение

Будет ли Вселенная расширяться вечно или в итоге рухнет обратно в крошечное пятнышко? Опубликованное в июне исследование считает, что в соответствии с основной теорией физики бесконечная экспансия невозможна. Однако появились новые доказательства того, что постоянно расширяющуюся Вселенную пока нельзя исключить.

Темная энергия и космическое расширение

Наша Вселенная пронизана масштабной и невидимой силой, которая кажется вступает в противовес с силой тяжести. Физики прозвали ее темной энергией. Полагают, что именно она толкает пространство наружу. Но июньская статья подразумевает, что темная энергия со временем меняется. То есть, Вселенная не будет расширяться вечность и способна рухнуть до размера точки Большого Взрыва.

Физики сразу нашли проблемы в теории. Они считают, что исходная теория не может быть истинной, так как не объясняет существование бозона Хиггса, выявленного в большом адроном коллайдере. Однако гипотеза может быть жизнеспособной.

Как объяснить существование всего?

Теория струн (теория всего) считается математические изящной, но экспериментально недоказанной основой объединения общей теории относительности Эйнштейна с квантовой механикой. Теория струн предполагает, что все частицы во Вселенной не являются точками, а представлены вибрирующими одномерными струнами. Различия в вибрациях позволяют видеть одну частицу как фотон, а другую – электрон.

Однако, чтобы оставаться жизнеспособной, теория струн должна включать темную энергию. Представьте последнюю в качестве шара в ландшафте гор и долин. Если шарик стоит на вершине горы, то может оставаться неподвижным или скатиться при малейшем возмущении, так как лишен стабильности. Если остается неизменным, то наделен низкой энергией и расположен в стабильной Вселенной.

Консервативные теоретики долго считали, что темная энергия остается постоянной и неизменной во Вселенной. То есть, мячик застыл между горами в долине и не катится с вершины. Однако июньская гипотеза предполагает, что теория струн не учитывает пейзаж с горами и долинами над уровнем моря. Скорее это небольшой уклон, где шар темной энергии скатывается вниз. Пока он катится, темная энергия становится все меньше и меньше. Все может закончиться тем, что темная энергия начнет тянуть Вселенную обратно к точке Большого Взрыва.

Но есть проблема. Ученые показали, что подобные неустойчивые горные вершины должны существовать, ведь есть бозон Хиггса. Также экспериментально удалось подтвердить, что эти частицы могут находиться в неустойчивых Вселенных.

Сложности со стабильностью вселенных

Исходная гипотеза сталкивается с проблемами в неустойчивых вселенных. Пересмотренная версия указывает на возможность существования горных вершин, но отказывается от устойчивых долин. То есть, шарик должен начать скатываться, а темная энергия меняться. Но если гипотеза неверна, то темная энергия останется постоянной, мы останемся в долине между горами, а Вселенная продолжит расширяться.

Исследователи надеются, что в течение 10-15 лет спутники, измеряющие расширения Вселенной, помогут разобраться в постоянной или меняющейся природе Вселенной.

Прочитало: 0

Вино на Луне… Виски на космической станции… Читая в детстве не самые детские книжки про космических пиратов, рейнджеров и прочих сорвиголов, я и не думал, что пить в космосе не положено. И действительно, у космических путешествий длинные и сложные отношения с выпивкой. Отправиться за тысячи километров от Земли в серую бездну неизвестности не так-то просто. Страшно. Тяжело. Почему бы астронавтам не расслабиться в конце рабочего дня, пропустив стаканчик-другой?

Увы, для любителей космоса и смочить губы крепким, потребление алкогольных напитков запрещено государственными органами, которые посылают космонавтов, например, на Международную космическую станцию. Но в скором времени отправиться на последний рубеж сможет и обычный человек - например, для колонизации Марса. Очевидно, бухлишко должно быть разрешено для такой длительной и мучительной поездки в один конец, которая растянется на годы? Или хотя бы оборудование для самостоятельного изготовления алкоголя на планете?

Выпивка и космическое пространство имеют долгие и сложные отношения. Давайте посмотрим, что может произойти с обычным пьющим, но астронавтом, и что может произойти, если мы начнем посылать в космос обычных пьющих людей.

Широко распространено мнение, что на большой высоте кружит голову и до состояния тошноты доходишь быстрее. Таким образом, было бы логично предположить, что алкоголь на орбите будет оказывать весьма сильные эффекты на организм человека. Но это не совсем правда.

Этот миф был развенчан еще в 1980-х годах. В 1985 году Федеральное авиационное управление США провело исследование, в котором изучалось поведение людей, выпивших алкоголь на смоделированных высотах, в процессе выполнения сложных задач и замеров алкометра.

В рамках исследования 17 мужчин попросили выпить немного водки на уровне земли и в камере, моделирующей высоту 3,7 километра. Затем попросили выполнить ряд задач, включая расчеты в уме, отслеживание света на осциллографе при помощи джойстика и другие. Исследователи заключили, что «никакого интерактивного эффекта алкоголя и высоты ни алкометр, ни оценка производительности не показали».

Выходит, это миф, что во время полета становишься пьяным быстрее? Дэйв Хэнсон, заслуженный профессор социологии в Университете штата Нью-Йорк в Потсдаме, исследовавший алкоголь и попивающий его в течение 40 лет, думает, что да. «Не могу представить, что в космосе напиваешься как-то по-другому», говорит он.

Впрочем, он также думает, что болезнь высоты может имитировать похмелье, а также имитировать интоксикацию. «Если люди неадекватно чувствуют себя под давлением, они могут чувствовать себя так и в состоянии алкогольного опьянения». И наоборот, люди, которые утверждают, что напиваются в самолете быстрее, чем обычно, могут просто проявлять особое поведение. Такие люди демонстрируют поведение пьяных сильнее, когда думают, что пьяны, а не потому, что на самом деле потребляли алкоголь.

«Если люди летят на самолете и думают, что по какой-то причине алкоголь окажет на них необычный эффект, они будут думать, что он оказывает на них необычный эффект», говорит Хэнсон.

Получается, если никакого дополнительного эффекта нет, можно пригубить немного крепкого на борту МКС? Нет, нельзя.

«Алкоголь на борту Международной космической станции запрещен для употребления», говорит Дэниел Хуот, представитель Космического центра им. Джонсона. «Использование алкоголя и других летучих компонентов контролируется на МКС из-за воздействия, которое их компоненты могут оказать на систему восстановления воды на станции».

По этой причине астронавты на космической станции не получают даже продуктов, которые содержат алкоголь вроде жидкости для полоскания рта, духов, лосьонов для бритья. Разлитое пиво на борту тоже может стать нешуточным риском повредить оборудование.

Остается также вопрос ответственности. Мы не позволяем водителям или пилотам реактивных истребителей напиваться и садиться за руль, так что неудивительно, что те же правила применяются к астронавтам внутри космической станции за 150 миллиардов долларов, плавающей вокруг Земли с гигантской скоростью.

Тем не менее в 2007 году независимая группа, созданная NASA, изучила здоровье астронавтов и пришла к выводу, что в истории агентства было по меньшей мере два астронавта, которые принимали большое количество алкоголя непосредственно перед полетом, но которым все-таки разрешили летать. Последующий обзор главы безопасности NASA не выявил никаких доказательств для обоснования претензий. Астронавтам строго запрещено пить за 12 часов перед полетом, поскольку от них требуют полного присутствия мысли и тела.

Причина этих правил ясна. В том же исследовании FAA от 1985 года на тему эффектов алкоголя на высоте ученые пришли к выводу, что важен каждый миллиграмм. Вне зависимости от высоты, на которой пили испытуемые, показатели алкотестера были одинаковыми. Их производительность тоже пострадала одинаково, но те, кто принимал плацебо на высоте, показывал результаты хуже, чем тот, кто принимал плацебо на уровне суши. Это позволяет предположить, что высота, независимо от потребления алкоголя, может оказывать незначительное влияние на умственную работоспособность. В исследовании заключается, что это служит поводом для дальнейшего ограничения употребление алкоголя на высоте.

Есть и другая причина избегать пенистые напитки вроде пива - без помощи гравитации жидкости и газы накапливаются в желудке астронавта, приводя к не самым приятным эффектам.

Тем не менее, несмотря на строгие правила, это не значит, что люди в космосе никогда не будут вступать в контакт с ферментированными жидкостями. На борту МКС проводилось много экспериментов с участием алкоголя, но не с чрезмерным его употреблением, поэтому никто на самом деле точно не знает, как будет реагировать человеческое тело.

«Мы изучаем все возможные процессы изменения тел космонавтов в космосе, в том числе и на уровне микробов», говорит Стефани Ширхольц, пресс-секретарь NASA. «И у нас есть очень надежная программа питания, которая гарантирует, что тела космонавтов получают все, чтобы оставаться здоровыми».

В рамках программы «Скайлэб» астронавтам с собой давали херес, но он плохо показал себя в полетах в условиях микрогравитации.

И самое, наверное, удивительное то, что первой жидкостью, которую пили на поверхности Луны, было вино. Базз Олдрин сказал в интервью, что выпил немного вина, причащаясь, прежде чем вышел из лунного модуля в 1969 году. Церемония проходила во время паузы в режиме связи, поэтому ее не передавали на Землю.

И хотя NASA давно наложило строгие ограничения на прием алкоголя в космосе, русские космонавты в прошлом могли позволить себе расслабиться. Космонавты на борту орбитальной станции «Мир» могли позволить себе немного коньяка и водки. Интересно, как они согласились лететь на МКС с ее сухим законом.

В 2015 году японская компания «Сантори» отправила на космическую станцию немного своего лучшего виски. Сделано это было в рамках эксперимента по наблюдению «проявления вкуса в алкогольных напитках в процессе использования в микрогравитации». Другими словами, раз в условиях микрогравитации выпивка набирается сил по-другому, то и вкус у нее будет лучше и проявится быстрее.

А несколько лет назад, с сентября 2011 года по сентябрь 2014 года, NASA проводило эксперимент по изучению влияния микрогравитации на виски и обугленную древесину дуба, которая помогает напитку в процессе. Через 1000 дней в космосе танины в виски остались неизменными - но космическая щепа выдала более высокие концентрации своего аромата.

Так что хотя астронавтам и запретили пить алкоголь, даже в космосе они продолжают работать над улучшением вкуса алкогольных напитков, которые мы пьем здесь, на Земле. Что касается марсианских миссий, которые растянутся на годы, без алкоголя там точно будет не обойтись.

Эксперты вроде Хэнсона, впрочем, не видят никакого вреда в дальнейшем ограничении алкоголя. Помимо практических соображений безопасности, могут быть и другие проблемы. Хэнсон считает, что множество социально-культурных различий землян, живущих в ограниченном пространстве много лет подряд, существенно усложнят пьянство.

«Это политика. Это культура. Но это не наука», говорит он. Что будет, если вы окажетесь среди мусульман, мормонов или трезвенников? Гармонизация культурных точек зрения в условиях ограниченного пространства будет приоритетной уже с самого начала.

Поэтому космонавтам, которые захотят приободриться духом, придется наслаждаться видом с окна, а не видом на дне стакана. Но мы оставим для них немного шампанского, когда они будут возвращаться.

Космос таит в себе множество загадок, и мы лишь начали изучать его. И одной из проблем, которые предстоит решить в будущем, является гравитация.

А что с ней не так, спросите вы? А её нет! Вернее, не так. Гравитация есть всегда, мы испытываем её от Земли, Луны, Солнца, других звёзд и даже центра нашей галактики. Но сила притяжения, которая подходит нам, есть только на Земле. И когда мы полетим на другие планеты или будем бороздить космос, как быть с гравитацией? Нужно создавать её искусственно.

Почему нам нужна определённая сила гравитации?

На Земле все организмы приспособились к силе притяжения, равной 9.8 м/с^2. Если она будет больше, то растения не смогут расти вверх, а мы постоянно будем испытывать давление, из-за чего наши кости будут ломаться, а органы разрушаться. А если она будет меньше, то у нас начнутся проблемы с доставкой питательных веществ в крови, ростом мышц и т.д.

Когда мы будем осваивать колонии на Марсе и Луне, то столкнёмся с проблемой пониженной гравитации. Наши мышцы частично атрофируются, приспособившись к местной силе притяжения. Но по возвращении на Землю у нас начнутся проблемы с хождением, перетаскиванием предметов и даже с дыханием. Именно настолько всё зависит от гравитации.

И у нас уже есть пример того, как это происходит - Международная Космическая Станция.

Космонавты на МКС и почему там нет гравитации

Те, кто посещает МКС, должны тренироваться на беговых дорожках и тренажёрах каждый день. Всё потому, что за время пребывания их мышцы теряют "хватку". В условиях невесомости не надо поднимать своё тело, можно расслабиться. Именно так думает организм. На МКС нет гравитации не потому, что она находится в космосе.

Расстояние от неё до Земли всего 400 километров, и сила притяжения на таком расстоянии лишь чуть-чуть меньше, чем на поверхности планеты. Но МКС не стоит на месте - она вращается по земной орбите. Она буквально постоянно падает на Землю, но её скорость настолько высока, что не даёт ей упасть.

Именно поэтому космонавты и находятся в состоянии невесомости. И всё же. Почему на МКС нельзя создать гравитацию? Это бы облегчило жизнь космонавтов в разы. Ведь они вынуждены тратить по несколько часов в день на физические упражнения только для поддержания формы.


Как создать искусственную гравитацию?

В научной фантастике давно создан концепт подобного космического корабля. Это огромное кольцо, которое должно постоянно вращаться вокруг своей оси. В результате этого центробежная сила "выталкивает" космонавта в сторону от центра вращения, и он будет воспринимать это как гравитацию. Но проблемы возникают, когда мы сталкиваемся с этим на практике.

Во-первых, нужно учесть силу Кориолиса - силу, возникающую при движении по кругу. Без этого нашего космонавта будет постоянно укачивать, а это не очень весело. В таком случае нужно ускорить вращение кольца на корабле до 2 оборотов в секунду, а это очень много, космонавту будет очень нехорошо. Чтобы решить эту проблему, нужно увеличить радиус кольца до 224 метров.

Корабль размером в полкилометра! Мы уже недалеко от Звёздных Войн. Вместо создания земной гравитации сначала мы создадим корабль с пониженной гравитацией, в котором останутся тренажёры. И лишь потом мы будем строить корабли с огроменными кольцами для сохранения гравитации. Кстати, на МКС как раз собираются строить модули для создания гравитации.

Сегодня учёные из Роскосмоса и NASA готовятся к отправке центрифуг на МКС, необходимых для создания искусственной гравитации там. Космонавтам больше не придётся тратить много времени на физические упражнения!

Проблема с гравитацией при больших ускорениях

Если мы хотим полететь к звёздам, то для путешествия к ближайшей Альфа Центавра А со скоростью в 99% от скорости света займёт 4.2 года. Но чтобы разогнаться до этой скорости, потребуется огромное ускорение. А значит, и огромные перегрузки, примерно в 1000-4000 тысячи раз больше земного притяжения. Такое не выдержать никому, и космический корабль с вращающимся кольцом должен быть просто гигантским, в сотни километров. Построить такое можно, но нужно ли?

К сожалению, мы до сих пор не до конца понимаем, как работает гравитация. И пока не придумали, как избежать эффекта таких перегрузок. Будем исследовать, проверять, изучать.

Большинство людей может судить об этом только по кадрам из фантастических фильмов, поэтому они подвержены неправдоподобным мифом.

Что на самом деле произойдет с человеком в открытом космосе?

Есть множество теорий о том, что случится с человеком, попавшим в открытый космос без скафандра. Большая часть из них строится на выдумках. Кто-то считает, что тело через несколько мгновений замерзнет, другие говорят, что оно будет испепелено космической радиацией, существует даже теория о закипании жидкости внутри организма человека. Рассмотрим самые популярные о мифы о том, что будет с человеком без скафандра в открытом космосе.

Тело сразу же заледенеет

Ученые готовы с точностью ответить, что такого не произойдет. В космосе очень холодно, но при этом его плотность слишком мала. В такой минимальной плотности тело человека не сможет передать свое тепло окружающей среде, вокруг него пустота, и это тепло некому забрать. Одной из главных сложностей в работе МКС является отведение от станции тепла, вовсе не защита от космического холода.


Человек будет испепелен космической радиацией

Радиация в космосе достигает больших величин, она очень опасно. Радиоактивные заряженные частицы пронизывают тело человека, вызывая лучевую болезнь. Но для того, чтобы умереть от этой радиации, необходимо получить очень большую дозу, а это займет немало времени. ЗА это время живое существо успеет умереть под воздействием других факторов. Для того, чтобы получить защиту от космических ожогов, не нужен скафандр, с этой задачей справится и обычная одежда. Если же предположить, что человек решил выйти в открытый космос полностью голым, то последствия от этого выхода для него будут очень плохими.

Кровь в сосудах человека закипит от низкого давления

Еще одна из теорий, якобы от низкого давления кровь в организме закипает и разрывает свои сосуды. Действительно, в космосе очень низкое давление, оно будет способствовать уменьшению температуры, при которой жидкости закипают. Однако, кровь в организме человека будет находиться под собственным давлением, для закипания показатель ее температуры должен достигнуть 46 градусов, чего у живых организмов быть не может. Если человек в отрытом космосе откроет рот и высунет язык, то он почувствует, как его слюна кипит, но ожога он при этом не получит, слюна будет кипеть при очень низкой температуре.

Тело разорвет перепад давления

Давление в космосе очень опасно, но действует оно по-другому. Перепад давления может в два раза увеличить в объеме внутренние органы человека, его тело двукратно раздуется. Но эффектного взрыва с разбрасыванием во все стороны внутренностей не произойдет, кожа человека очень эластична, она сможет выдержать такое давление, а если на человека будет надета облегающая одежда, то объемы его тела останутся неизменными.


Человеку станет нечем дышать

Это действительно так, но ситуация обстоит не так, как многие из нас ее себе представляют. Огромную опасность для дыхательной системы человека в космосе представляет собой давление. В космосе нет кислорода, поэтому продолжительность жизни человека без скафандра будет зависеть от того, насколько он сможет задержать дыхание. Находясь под водой, люди задерживают дыхание и пытаются всплыть на поверхность, в космосе так сделать не получится. Задержка дыхания в космосе приводит к разрыву легких под воздействием вакуума, в такой ситуации спасти человека будет невозможно. Существует лишь один способ продлить жизнь в открытом космосе, нужно позволить всем газам стремительно выйти из вашего тела, этот процесс может сопровождаться неприятными последствиями в виде опорожнения желудка или кишечника. После того, как кислород покинет дыхательную систему, у человека останется примерно 14 секунд, пока насыщенная кислородом кровь будет продолжать питать мозг, после этого человек потеряет сознание. Однако, и это не означает неминуемую гибель, организм человека не настолько хрупок, как может показаться на первый взгляд, он способен противостоять враждебной обстановке космоса. Ученые предполагают, что если человек после полутораминутного пребывания в открытом космосе доставить в безопасную для него среду, то он не только останется в живых, но и сможет полноценно восстановиться после такого испытания.

Для подтверждения этого предположения проводились опыты на обезьянах.
Исследования показали, что шимпанзе после трехминутного пребывания в условиях вакуума приходит в норму уже через несколько часов.

Во время проведения эксперимента наблюдались все симптомы, которые были описаны выше – увеличение тела в объемах и потеря сознания из-за кислородного голодания. Подобные опыты проводились и с собаками, собаки хуже переносят условия вакуума, предел выживаемости для них составил всего две минуты.


Тело человека реагирует на изменения окружающей среды не так, как тело животного, поэтому полностью полагаться на эти опыты нельзя. Понятно, что никто не будет специально проводить такие опыты над людьми, но в истории имеется несколько показательных несчастных случаев с космонавтами. Космический техник Джим Лебланк в 1965 году проверял герметичность скафандра, предназначенного для лунных экспедиций, в специальной камере. В процессе одного из этапов испытания давление в камере было максимально приближено к космическому, неожиданно произошла разгерметизация скафандра, и находящийся в нем техник потерял сознание уже через 14 секунд. В норме для восстановления нормального земного давления в камере требовалось около получаса, но в виду чрезвычайности ситуации процесс был ускорен до полутора минут. Джим Лебланк пришел в сознание, когда давление в камере стало таким, как на Земле на высоте 4,5 км над уровнем моря.

В качестве еще одного примера можно привести несчастный случай на космическом корабле Союз-11. Когда аппарат спускался на землю, произошла разгерметизация. Этот несчастный случай навсегда вошел в историю космонавтики, так как причиной смерти трех космонавтов стал случайно открывшийся вентиляционный клапан диаметров в полтора сантиметра.


По информации, полученной с записывающей аппаратуры, все трое потеряли сознание через 22 секунды после полной разгерметизации, а смерть наступила через 2 минуты. Общее время, проведенное в околовакуумных условиях, составило 11,5 минут. После того, как космический корабль приземлился на землю, спасать космонавтов, к сожалению, было уже поздно.