Виды фосфорилирования биохимия. Окислительное фосфорилирование: общие сведения


Ведущая роль энергии на метаболическом пути зависит от процесса, суть которого - фосфорилирование окислительное. Питательные вещества окисляются, образуя при этом энергию, которую организм запасает в митохондриях клеток как АТФ. У всякой формы земной жизни собственные излюбленные питательные вещества, однако АТФ - соединение универсальное, а энергия, которую производит фосфорилирование окислительное, запасается, чтобы использовать её для метаболических процессов.

Бактерии

Более трёх с половиной миллиардов лет назад появились первые живые организмы на нашей планете. Жизнь зародилась на Земле благодаря тому, что появившиеся бактерии - прокариотические организмы (не имеющие ядра) разделились на два вида по принципу дыхания и питания. По дыханию - на аэробные и анаэробные, а по питанию - на гетеротрофные и автотрофные прокариоты. Это напоминание вряд ли будет излишним, потому что фосфорилирование окислительное невозможно объяснить без базовых понятий.

Итак, прокариоты по отношению к кислороду (физиологическая классификация) делятся на аэробные микроорганизмы, которым свободный кислород безразличен, и аэробные, жизнедеятельность которых полностью зависит от его наличия. Именно они и осуществляют фосфорилирование окислительное, находясь в среде, насыщенной свободным кислородом. Это наиболее широко распространённый метаболический путь с высокой энергетической эффективностью сравнительно с анаэробным брожением.

Митохондрии

Ещё одно базовое понятие: Это энергетическая батарея клетки. Расположены митохондрии в цитоплазме и их там невероятное количество - в мускулах человека или в его печени, например, клетки содержат до полутора тысяч митохондрий (как раз там, где происходит наиболее интенсивный метаболизм). И когда окислительное фосфорилирование происходит в "дело рук" митохондрий, они же и хранят, и распределяют энергию.

Даже от деления клеток митохондрии не зависят, они очень подвижны, свободно перемещаются в цитоплазме, когда это им нужно. У них есть собственная ДНК, а потому они и рождаются, и умирают самостоятельно. Тем не менее, жизнь клетки от них целиком и полностью зависит, без митохондрий она не функционирует, то есть - жизнь поистине невозможна. Жиры, углеводы, белки окисляются, образуя в результате атомы и электроны водорода - восстановительные эквиваленты, которые и следуют далее по дыхательной цепи. Вот так происходит окислительное фосфорилирование, механизм его, казалось бы, прост.

Не так уж просто

Энергия, произведённая митохондриями, превращается в другую, которая является энергией электрохимического градиента сугубо для протонов, которые находятся на внутренней мембране митохондрий. Именно эта энергия необходима для синтеза АТФ. И именно это и есть окислительное фосфорилирование. Биохимия - наука довольно молодая, лишь в середине девятнадцатого века были обнаружены в клетках гранулы митохондрий, а сам процесс получения энергии был описан гораздо позже. Было отслежено, как триозы, образовавшиеся посредством гликолиза (а главное - пировиноградная кислота), производят дальнейшее окисление в митохондриях.

Триозы используют энергию расщепления, от чего выделяется СО 2 , потребляется кислород и синтезирует огромное количество АТФ (аденозинтрифосфорная кислота, а что это такое - особенно хорошо знают люди, увлекающиеся бодибилдингом). Все вышеописанные процессы тесно связаны с окислительными циклами, а также дыхательной цепью, переносящей электроны. Таким образом окислительное фосфорилирование происходит в клетках, синтезируя для них "топливо" - молекулы АТФ.

Окислительные циклы и дыхательная цепь

В окислительном цикле трикарбоновые кислоты освобождают электроны, которые начинают своё путешествие по электронотранспортной цепи: сначала на молекулы коферментов, здесь НАД - главное (никотинамид адениндинуклеотид), и далее происходит перенос электронов в ЭТЦ (электротранспортная цепь), пока они не соединятся с молекулярным кислородом и не образуют молекулу воды. Окислительное фосфорилирование, механизм которого вкратце описан выше, переносится на другое место действия. Это - белковые комплексы, встроенные во внутреннюю мембрану митохондрий.

Именно здесь происходит кульминация - превращение энергии через последовательность окисления и восстановление элементов. Здесь интересны три основные точки электротранспортной цепи, где происходит окислительное фосфорилирование. Биохимия очень глубоко и внимательно рассматривает этот процесс. Возможно, отсюда когда-нибудь родится новое лекарство от старения. Итак, в трёх точках этой цепи из фосфата и АДФ (аденозиндифосфат - который состоит из рибозы, аденина и двух порций фосфорной кислоты) образуется АТФ. Именно поэтому процесс получил такое название.

Клеточное дыхание

Клеточное (иначе - тканевое) дыхание и окислительное фосфорилирование - этапы одного и того же процесса в совокупности. Используется воздух в каждой клетке тканей и органов, где продукты расщепления (жиры, углеводы, белки) расщепляются, а при этой реакции образуется энергия, запасаемая в виде Обычное лёгочное дыхание отличается от тканевого тем, что в организм поступает кислород и выводится из него углекислый газ.

Организм всегда деятелен, энергия его расходуется на движение и на рост, на самовоспроизведение, на раздражимость и на многие другие процессы. Именно для этого и происходит окислительное фосфорилирование в митохондриях. можно разделить на три уровня: окислительное образование АТФ из пировиноградной кислоты, а также аминокислот и жирных кислот; ацетильные остатки разрушаются посредством трикарбоновых кислот, после чего освобождаются две молекулы углекислого газа и четыре пары атомов водорода; электроны и протоны переносятся к молекулярному кислороду.

Дополнительные механизмы

Дыхание на клеточном уровне обеспечивает образование и пополнение АДФ непосредственно в клетках. Хотя пополниться организм может и другим путём. Для этого существуют и при необходимости включаются дополнительные механизмы, хотя и не столь эффективные.

Это системы, в которых происходит бескислородный распад углеводов - гликогенолиза и гликолиза. Это уже не окислительное фосфорилирование, реакции несколько другие. Но клеточное дыхание не может прекратиться, поскольку в его процессе образуются очень нужные молекулы важнейших соединений, используемые для самых разных биосинтезов.

Формы энергии

Когда переносятся электроны в митохондриальной мембране, где происходит окислительное фосфорилирование, дыхательная цепь из каждого своего комплекса направляет высвободившуюся энергию на перемещение протонов сквозь мембрану, то есть из матрикса в пространство между мембранами. Тогда образуется разность потенциалов. Протоны положительно заряжены и находятся в межмембранном пространстве, а отрицательно заряженные действуют из матрикса митохондрий.

Когда достигается определённая разность потенциалов, белковый комплекс возвращает протоны обратно в матрикс, превращая полученную энергию в совершенно другую, где сопрягаются окислительные процессы с синтетическим - фосфорилированием АДФ. Во всё время окисления субстатов и перекачки протонов через мембрану митохондрии не прекращается синтез АТФ, то есть - фосфорилирование окислительное.

Два вида

Окислительное и субстратное фосфорилирование коренным образом отличаются друг от друга. Согласно представлениям современности, формы жизни наиболее древние умели пользоваться только реакциями субстратного фосфорилирования. Для этого использовались существующие во внешней среде органические соединения по двум каналам - как источник энергии и как источник углерода. Однако такие соединения в окружающей среде постепенно иссякли, и уже появившиеся организмы начали приспосабливаться, искать новые источники энергии и новые источники углерода.

Так они научились использовать энергию света и углекислоты. Но пока это не произошло, организмы освобождали энергию из окислительных процессов брожения и так же хранили её в молекулах АТФ. Это и получило название фосфорилирования субстратного, когда используется способ катализирования растворимыми ферментами. Сбраживаемый субстрат образует восстановитель, который переносит электроны на нужный эндогенный акцептор - ацетон, ацетальгид, пируват и тому подобные, или же высвобождается Н 2 - газообразный водород.

Сравнительная характеристика

Сравнительно с брожением окислительное фосфорилирование имеет гораздо больший энергетический выход. Гликолиз даёт суммарный выход АТФ в две молекулы, а по ходу процесса синтезируется от тридцати до тридцати шести. Происходит перемещение электронов к соединениям-акцепторам от соединений-доноров посредством окислительных и восстановительных реакций, образующих энергию, запасаемую как АТФ.

Эукариоты осуществляют эти реакции комплексами белков, которые локализованы внутри митохондриальной мембраны клетки, а прокариоты работают снаружи - в её межмембранном пространстве. Как раз этот комплекс связанных белков и составляет ЭТЦ (электронотранспортную цепь). Эукариоты в своём составе имеют только пять белковых комплексов, а прокариоты - множество, и все они работают с самыми разными донорами электронов и их акцепторами.

Сопряжения и разобщения

Процессом окисления создаётся электрохимический потенциал, а с процессом фосфорилирования этот потенциал используется. Это значит, что обеспечено сопряжение, иначе - связывание процессов фосфорилирования и окисления. Отсюда и название - окислительное фосфорилирование. Электрохимический потенциал, необходимый для сопряжения, создают три комплекса дыхательной цепи - первый, третий и четвёртый, которые называются пунктами сопряжения.

Если внутренняя мембрана митохондрии повреждена или увеличилась её проницаемость от деятельности разобщителей, это непременно вызовет исчезновение или уменьшение электрохимического потенциала, а следом наступит разобщение процессов фосфорилирования и окисления, то есть - прекращение синтеза АТФ. Именно явление, когда исчезает электрохимический потенциал, называется разобщением фосфорилирования и дыхания.

Разобщители

Состояние, когда окисление субстратов продолжается, а фосфорилирование не происходит (то есть, АТФ не образуется из Ф и АДФ), - это разобщение фосфорилирования и окисления. Такое случается, когда в процесс вмешиваются разобщители. Что они из себя представляют и к каким результатам стремятся? Допустим, синтез АТФ сильно снижен, то есть в меньшем количестве синтезируется, а дыхательная цепь при этом функционирует. Что происходит с энергией? Она выделяется как тепло. Все ощущают такое во время болезни с повышенной температурой тела.

Температурите? Значит, поработали разобщители. Например, антибиотики. Это слабые кислоты, которые растворяются в жирах. Проникая в межмембранное пространство клетки, они диффундируют в матрикс, утягивая за собой связанные протоны. Разобщительным действием, например, обладают гормоны, выделяемые щитовидной железой, которые содержат йод (трийодтиронин и тироксин). Если щитовидная железа гиперфункционирует, состояние больных ужасное: им недостаёт энергии АТФ, они потребляют очень много пищи, поскольку организм требует для окисления много субстратов, но в весе теряют, поскольку основная часть получаемой энергии уходит в виде тепла.

Окислительное фосфорилирование -- это основной путь синтеза АТФ, за счет энергии окисления субстрата кислородом. Процесс окислительного фосфорилирования осуществ­ляется вмитохондриях. Митохондрии справедливо называют «энергетическими стан­циями» клеток, так как они улавливают энергию внешних ресурсов и трансформируют ее в другие формы энергии. Условно можно разделить процесс окислительного фосфорилирования на 4 этапа.

1. Окисление энергетических субстратов в матриксе митохондрий.

2. Окисление НАДН и ФАДН 2 в митохондриальной дыхательной цепи.

З. Генерирование протонного потенциала ΔμH + за счет энергии окисления энергети­ческих субстратов.

4. Синтез АТФ за счет энергии протонного потенциала.

Окисление энергетических субстратов

В реакции дегидрирования при действии НАД + - и ФАД - зависимыхдегидрогеназ (ДГ)от энергетических субстратов отщепляются два атома водорода. Ферменты лока­лизованы в матриксе митохондрий, за исключением ФАД-зависимой сукцинатдегидрогеназы, которая локализована на поверхности внутренней мембраны митохондрий.

Пиридинзависимые дегидрогеназы

ПВК Ацетил - КоА

Изоцитрат ДГ α-KT
α-KT АН 2 А Сукцинил-S-КоА

Малат ОАА

β-гидроксиацил-КоА НАД + НАДН+Н + β-кетоацил-КоА

Флавинзависимые дегидрогеназы

Сукцинат ДГ Фумарат

Ацил-КоА АН 2 А Ациленоил -КоА

ФАД ФАДН 2

В восстановленных коферментах 2ē находятся на более высоком энергетическом уровне, это высокоэргические электроны.

НАДН+Н + ↔ 2Н ↔ 2Н + + 2ē

Таким образом, химическая энергия субстратов (АН 2) трансформировалась в энергию электронов атомов водорода (электрическую энергию).

Кофакторы дегидрогеназ (НАДН + Н + - и ФАДН 2 –зависимых) являются переносчиками двух атомов водорода на другую ферментативную систему, а именно – на систему дыхательной цепи.

2.Окисление НАДН+Н + и ФАДН 2 в митохондриальной дыхательной цепи (ЦПЭ).

Окисление НАДН+Н + и ФАДН 2 осуществляется при участии окислительно-восстановительных ферментов митохондрий по реакции

НАДН+Н + + 1 / 2 O 2 НАД + + H 2 O

Изменение свободной энергии этого процесса составляет: ΔG° = -220 кДж/моль

(ΔG° = - 52,6 ккал/моль).

Сущность окисления заключается в последовательной передаче электронов от НАДН+Н + и ФАДН 2 на кислород при помощи специальных переносчиков в электронтранспортной цепи.

Переносчики электронов в электронтранспортной цепи

Окислительно-восстановительные переносчики локализованы на поверхности или встроены во внутренней мембране митохондрий. Мерой сродства окислительно- восстановительной пары к электро­нам служит окислительно-восстановительный потенциал Е о, величина которого опреде­ляет направленность переноса электронов.



Типы переносчиков

ФМН + 2Н + + 2ē ↔ ФМНН 2

Железо-серные центры

Это белковые негемовые железосодержащие переносчики электронов. Имеются несколько типов железо-серных центров: Fe-S,Fe 2 -S 2 , Fe 4 -S 4 . Атомы железа комплексов мо­гут отдавать и принимать электроны, поочередно переходя в ферро-(Fe 2+) - и ферри-(Fe 3+) - состояния. Все железо-серные центры отдают электроны убихинону.

Fe 3+ -S + 2ē ↔ Fe 2+ -S

Убихинон, кофермент-Q(KoQ) – единственный небелковый переносчик электронов.

КоQ (хинон) КоQ (семихинон) КоQН 2 (гидрохинон)

Убихинон при восстановлении приобретает не только электроны, но и протоны. При одноэлектронном восстановлении он превращается в семихинон – органический свободный радикал. Е о =+0,01

Цитохромы – белковые переносчики электронов, в качестве простетической группы, со­держащие гемовое железо. В основе функционирования цитохромов лежит изменение степени окисления атома железа Fe 3+ +ē ↔ Fe 2+ . Различные цитохромы обозначаются буквенными индексами: b, с 1 , с, a, a 3 . Отличаются цитохромы по структуре белковой части и боковых цепей гема, в связи с этим они имеют и различные величины редокс-потенциалов (окислительно-восстановительных потенциалов). Цитохром «b» Е о = +0,08 , «c i » Е о =+0,22, «с» Е о = +0,25, «аа з » Е о = +0,29. Отличительной особенностью цитохрома с является то,что он непрочно связан с внешней поверхностью внутренней мембраны митохондрий и легко по­кидает её.



Все эти переносчики электронов можно сгруппировать в четыре ферментативных ком­плекса, структурированные во внутренней мембране митохондрий, представляющие со­бой ферментативный ансамбль,получивший название «дыхательные ферменты»,«цитохромная система», «ЦПЭ»(цепь переноса электронов).

Комплекс I – НАДН-дегидрогеназа (НАДН-КоQ-редуктаза). Простетические группы -ФМН, FeS. Акцептор электронов – KoQ .

Комплекс III – КоQН 2 -дегидрогеназа (KoQH 2 -цит.с-редуктаза). Простетические группы: FeS, цитохромы b 1 , b 2 , с 1 . Акцептор электронов – цитохром - с.

Комплекс IV – цитохромокcидаза. Простетические группы: цитохромы аа з, Си 2+ . Ак­цептор электронов– кислород.

Комплекс II – сукцинатдегидрогеназа (Сукцинат-КоQ-редуктаза). Простетические группы ФАД, FeS. Акцептор электронов – KoQ .

Между комплексами электроны транспортируются при помощи подвижных переносчиков - убихинона и цитохрома-с.

Окислительно-восстановительные переносчики в ЦПЭ расположены в порядке увели­чения стандартных окислительных потенциалов, что обеспечивает самопроизвольный транспорт двух электронов по дыхательной цепи от НАДН+Н + к кислороду - конечно­му акцептору электронов. Перенос двух электронов по ЦПЭ является полезной ра­ботой и сопровождается поэтапным высвобождением свободной энергии Гиббса (ΔG), которая далее используется в синтезе АТФ.Поэтапное высвобождение энергии приводит к тому, что электроны, которые восстанавливают кислород, находятся на более низком энергетическом уровне, по сравнению с электронами, находящимися в вос­становленном НАДН +Н + в начале цепи.

З. Генерирование протонного потенциала ΔμН +

Каким же образом осуществляется сопряжение транспорта электронов по дыхательной цепи с трансформацией высвободившейся электрической энергии в энергию химиче­ских связей АТФ? На этот вопрос в 1961 году дал ответ английский ученый Питер Мит­челл. Его концепция заключалась в том, что движущей силой синтеза АТФ является электрохимический потенциал, протонный потенциал – ΔμH + . ΔμH + . = Δ рН+ Δ φ

рН - градиент протонов, Δφ – разность электрического потенциала. В 1978 году

П. Митчеллу была присуждена Нобелевская премия и хемиосмотическая теория стала общепризнанной.

По теории П. Митчелла высвобождающаяся поэтапно энергия в процессе транспорта электронов по дыхательной цепи используется для выкачивания протонов из матрикса митохондрий в межмембранное пространство. Транспорт 2Н + из матрикса митохондрий в межмембранное пространство создает градиент концентрации протонов - ΔрН и приво­дит к возникновению отрицательного заряда на поверхности мембраны со стороны мат­рикса и положительного заряда со стороны межмембранного пространства, при этом соз­дается разность электрических потенциалов – Δφ. Источником протонов в матриксе митохондрий является НАДН + Н + , ФАДН 2 , вода. Возможность генерирования протонного потенциала обеспечивается:

1) непроницаемостью внутренней мембраны митохондрий для ионов вообще и, особенно, для протонов.

2) раздельным транспортом протонов и электронов по дыхательной цепи. Это обеспечи­вается наличием переносчиков 2-х типов: только для электронов и электронов и протонов одновременно.

4. Синтез АТФ за счет протонного потенциала

Ферментативная система Н + - АТФ- синтазный комплекс, АТФ-синтаза, АТФ-азакатализирует реакцию фосфорилирования АДФ неорганическимфосфатом за счет энергии которая аккумулирована в электрохимическом потенциале.

Протонная АТФ-синтаза состоит из 2-х субкомплексов: F 1 иF o . F 1 - субъединица пред­ставлена 5 видами полипептидных цепей и отвечает за синтез и гидролиз АТФ. Имеет форму шляпки гриба, выступающего в матрикс митохондрий и связана с мембранной белковой субъединицей F о. F o - это гидрофобный сегмент из 4-х полипептидных цепей, который пронизывают всю мембрану митохондрий и образует протонный каналв ферментативном комплексе. Через протонные каналы АТФ-синтазы происходит, возвращение протонов обратно вматрикс митохондрий. Существует предположение,что прохождение прото­нов сопровождается конформационными изменениями активных центров АТФ-синтазы, что и стимулирует синтез АТФ.

В соответствии с механизмом сопряжения окислительного фосфорилирования, пред­ложенным Митчеллом, перенос двух протонов через, протонный канал АТФ-синтазы сопровождается синтезом одной молекулы АТФ.

Реакции окисления, катализируемые пиридинзависимыми дегидрогеназами, сопряжены с I-м комплексом ЦПЭ,поэтому высвобождающаяся поэтапно энергия обеспечивает транслокацию в межмембранное пространство трех пар протонови следовательно, син­тез 3-х молекул АТФ.

Реакции окисления, катализируемые флавинзависимыми дегидрогеназами, сопряжены с III-м комплексом ЦПЭ и в межмембранное пространство переносятся лишь две пары протонов,следовательно, синтезируется 2 АТФ.

Реакция окисления аскорбиновой кислотысопряжена на уровне семихинона,поэтому осуществляется транслокация только одной пары протонов и синтезируется лишь 1 молекула АТФ.

Рис.6-2. Схема «Дыхательной цепи»

Окислительное фосфорилирование - один из важнейших компонентов клеточного дыхания, приводящего к получению энергии в виде АТФ Субстратами окислительного фосфорилирования служат продукты расщепления органических соединений - белки жиры и углеводы. Процесс окислительного фосфорилирования проходит на кристах митохондрий.

Однако чаще всего в качестве субстрата используются углеводы Так, клетки головного мозга не способны использовать для питания никакой другой субстрат, кроме углеводов.

Предварительно сложные углеводы расщепляются до простых, вплоть до образования глюкозы. Глюкоза является универсальным субстратом в процессе клеточного дыхания. Окисление глюкозы подразделяется на 3 этапа:

Гликолиза

Окислительное декарбоксилирование и цикл Кребса

Окислительное фосфорилирование.

При этом гликолиз является общей фазой для аэробного и анаэробного дыхания.

Для синтеза 1 молекулы АТФ необходимо 3 протона

У животных, растений и грибов окислительное фосфорилирование протекает в специализированных субклеточных структурах-митохондриях

46. Биохимические механизмы разобщения окисления и фосфорилирования факторы их вызывающие
Разобщение дыхания и фосфорилирования

Некоторые химические вещества (протонофоры) могут переносить протоны или другие ионы (ионофоры) из межмембранного пространства через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это явление называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается. В этом случае скорость окисления NADH и FADH2возрастает, возрастает и количество поглощённого кислорода, но энергия выделяется в виде теплоты, и коэффициент Р/О резко снижается. Как правило, разобщители - липофильные вещества, легко проходящие через липидный слой мембраны. Одно из таких веществ - 2,4-динитрофенол (рис. 6-17), легко переходящий из ионизированной формы в неионизированную, присоединяя протон в межмембранном пространстве и перенося его в матрикс.

Примерами разобщителей могут быть также некоторые лекарства, например дикумарол - антикоагулянт (см. раздел 14) или метаболиты, которые образуются в организме, билирубин - продукт катаболизма тема (см. раздел 13), тироксин - гормон щитовидной железы (см. раздел 11). Все эти вещества проявляют разобщающее действие только при их высокой концентрации.

Выключение фосфорилирования по исчерпании АДФ либо неорганического фосфата сопровождается торможением дыхания (эффект дыхательного контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения)

1. Суммарный выход:

Для синтеза 1 молекулы АТФ необходимо 3 протона.

2. Ингибиторы окислительного фосфорилирования:

Ингибиторы блокируют V комплекс:

Олигомицин - блокируют протонные каналы АТФ-синтазы.

Атрактилозид, циклофиллин - блокируют транслоказы.

3. Разобщители окислительного фосфорилирования:

Разобщители - липофильные вещества, которые способны принимать протоны и переносить их через внутреннюю мембрану митохондрий минуя V комплекс(его протонный канал). Разобщители:

Естественные - продукты перекисного окисления липидов, жирных кислот с длинной цепью; большие дозы тиреоидных гормонов.

Искусственные - динитрофенол, эфир, производные витамина К, анестетики.

47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках

Свободные радикалы в химии - частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов на внешней электронной оболочке. По другому определению свободный радикал - вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьируется.

Образование

Радикал может образоваться в результате потери

или при получении одного электрона нерадикальной молекулой:

Большинство радикалов образуются в ходе химических реакций при гомолитической диссоциации связей. Они сразу же претерпевают дальнейшие превращения в более устойчивые частицы:

Зарождение радикальной цепи можно инициировать действием на вещество жестких условий (высокие температуры, электромагнитное излучение, радиация). Многие перекисные соединения - также хорошие радикалообразующие частицы.

Антиоксиданты (антиокислители, консерванты) - ингибиторы окисления, природные или синтетические вещества, способные замедлять окисление (рассматриваются преимущественно в контексте окисления органических соединений).

Основной внутренний источник опасности для клеточного гомеостаза анаэробных огранизмов - это интермидиаты, участвующие в передаче кислорода, и продукты, образованные в результате метаболизма кислорода. Анаэробные организмы в процессе эволюции выработали хорошо отрегулированные механизмы для нейтрализации окислительных эффектов кислорода и его активных метаболитов. Эти самоподдерживающиеся защитные компоненты называют "антиокислительными системами защиты" .

Механизмы действия

Окисление углеводородов, спиртов, кислот, жиров и других веществ свободным кислородом представляет собой цепной процесс. Цепные реакции превращений осуществляются с участием активных свободных радикалов - перекисных (RO 2 *), алкоксильных (RO *), алкильных (R *), а также активных форм кислорода (супероксид анион, синглетный кислород). Для цепных разветвлённых реакций окисления характерно увеличение скорости в ходе превращения (автокатализ). Это связано с образованием свободных радикалов при распаде промежуточных продуктов - гидроперекисей и др.

Механизм действия наиболее распространённых антиоксидантов (ароматические амины, фенолы, нафтолы и др.) состоит в обрыве реакционных цепей: молекулы антиоксиданта взаимодействуют с активными радикалами с образованием малоактивных радикалов. Окисление замедляется также в присутствии веществ, разрушающих гидроперекиси (диалкилсульфиды и др.). В этом случае падает скорость образования свободных радикалов. Даже в небольшом количестве (0,01-0,001 %) антиоксиданты уменьшают скорость окисления, поэтому в течение некоторого периода времени (период торможения, индукции) продукты окисления не обнаруживаются. В практике торможения окислительных процессов большое значение имеет явление синергизма - взаимного усиления эффективности антиоксидантов в смеси, либо в присутствии других веществ.

Оксидазный путь использования кислорода в клетке

Причины и последствия повреждений митохондрий

Метаболические и гомеостатические функции митохондрий

Локализации ферментов митохондрий

1). Наружная мембрана содержит: а). элонгазы, ферменты удлиняющие молекулы насыщенных жирных кислот; б). кинуренингидроксилазу; в). моноаминооксидазу (маркер) и др.

2). Межмембранное пространство содержит: а). аденилатциклазу; б). нуклеозиддифосфаткиназы.

3). Внутренняя мембрана содержит: а). ферменты цепи окислительного фосфорилирования, из них цитохромоксидаза - маркер; б). СДГ в). β-оксибутират ДГ; г). карнитинацилтрансферазу.

4). Матрикс содержит: а). ферменты ЦТК; б). ферменты β-окисления жирных кислот; в). аминотрансферазы АСТ, АЛТ; г). глутамат ДГ д). фосфоенолпируваткарбоксилазу е). пируват ДГ.

В клетке содержится от сотни до тысячи митохондрий, их размер 2-3 мкм в длину и 1 мкм в ширину.

В митохондриях происходит: синтез АТФ и теплопродукция в реакция окислительного фосфорилирования; β-окисления жирных кислот; реакции ЦТК, через ЦТК протекают некоторые реакции глюконеогенеза, переаминирования, дезаминирования, липогенеза и синтеза гема, осуществляется интеграция белкового, липидного и углеводного обмена.

Повреждение внутренней мембраны митохондрий химическими и физическими факторами приводит к нарушению процесса синтеза АТФ, торможению анаболических реакций, межмембранного транспорта и всех видов обмена веществ.

- окислительное фосфорилирование

Оксидазный путь использования кислорода состоит из процессов окисления и фосфорилирования, которые между собой сопряжены. В нем участвует около 40 различных белков. Оксидазный путь потребляет 90% О 2 , является основным источником АТФ в аэробных клетках.

Окислительным фосфорилированием называют синтез АТФ из АДФ и Н 3 РО 4 за счет энергии переноса электронов по ЦПЭ. При окислении выделяется 220 кДж/моль свободной энергии. На синтез 3 АТФ расходуется: 30,5*3=91,5 кДж/моль. В виде тепла выделяется: 220-91,5=128,5 кДж/моль. КПД = 40%.НАДН 2 + ½О 2 → НАД + + Н 2 О + 220 кДж/мольАДФ + Н 3 РО 4 + 30,5 кДж/моль = АТФ + Н 2 О1). Цепь окисления (дыхательная цепь) состоит из 4 белковых комплексов, которые определенным образом встроены во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами.Комплекс I – НАДН 2 дегидрогеназный комплекс самый большой из дыхательных ферментных комплексов – имеет молекулярную массу свыше 800КДа, состоит из более 22 полипептидных цепей, в качестве коферментов содержит ФМН и 5 железо-серных (Fe 2 S 2 и Fe 4 S 4) белков. Комплекс II – СДГ . В качестве коферментов содержит ФАД и железо-серный белок.Комплекс III – Комплекс b-c 1 (фермент QH 2 ДГ) , имеет молекулярную массу 500КДа, состоит из 8 полипептидных цепей, и вероятно существует в виде димера. Каждый мономер содержит 3 гема, связанных с цитохромами b 562 , b 566 , с 1 , и железо-серный белок.Комплекс IV – Цитохромоксидазный комплекс имеет молекулярную массу 300КДа, состоит из 8 полипептидных цепей, существует в виде димера. Каждый мономер содержит 2 цитохрома (а и а 3) и 2 атома меди.Коэнзим Q (убихинон). Липид, радикал которого у млекопитающих образован 10 изопреноидными единицами (Q 10). Убихинон переносит по 2Н + и 2е - . убихинон ↔ семихинон ↔ гидрохинонЦитохром с . Периферический водорастворимый мембранный белок с массой 12,5КДа, содержит 1 полипептидную цепь из 100 АК, и молекулу гема.Молекулярные соотношения между компонентами дыхательной цепи отличаются в разных тканях. Например, в миокарде, на 1 молекулу НАДН 2 дегидрогеназного комплекса приходиться 3 молекулы комплекса b-c 1 , 7 молекул цитохромоксидазного комплекса, 9 молекул цитохрома С и 50 молекул убихинона.2). Фосфорилирование осуществляется АТФ-синтетазой (Н + -АТФ-аза) - интегральным белком внутренней мембраны митохондрий. АТФ-синтаза состоит из 2 белковых комплексов, обозначаемых как F 0 и F 1 . Гидрофобный комплекс F 0 погружён в мембрану.

Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ состоит из 3 этапов: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.

Поступление веществ в организм происходит в результате дыхания (кислород) и питания. Источником энергии для человека служит распад органических веществ пищи. С питательными веществами поступают преимущественно белки, полисахариды, жиры, которые в процессе пищеварения расщепляются на более мелкие молекулы (глюкоза, аминокислоты, жирные кислоты, глицерол). В клетках эти вещества подвергаются превращениям, включаясь в метаболизм (обмен веществ). Они могут использоваться для синтеза более сложных молекул (анаболизм ) либо распадаются до конечных продуктов в процессах катаболизма .

Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО 2 , Н 2 О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме.

Биологическое окисление

Распад веществ в тканях сопровождается потреблением кислорода и выделением СО 2 . При этом выделяется энергия, необходимая для функционирования клеток. Вдыхаемый кислород используется для синтеза метаболической воды с участием водорода окисляемых субстратов в процессе тканевого дыхания .

SH 2 + ½ О 2 S + Н 2 О + энергия

Например, окисление 1 моль глюкозы происходит с выделением 2780 кДж энергии. Энергия окисляющихся веществ используется клетками для синтеза АТФ из АДФ. Фосфорилирование АДФ в клетках происходит путем присоединения Н 3 РО 4 . Реакция идет с затратой энергии.

АТФ - молекула, богатая энергией, поскольку она содержит две макроэргические связи. Некоторые биосинтетические реакции в организме могут протекать при участии других нуклеозидтрифосфатов, аналогов АТФ; к ним относят ГТФ, УТФ и ЦТФ. Все эти нуклеотиды, в свою очередь, образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, за счёт свободной энергии АТФ совершаются различные виды работы, лежащие в основе жизнедеятельности организма, например, такие как мышечное сокращение или активный транспорт веществ.

При использовании АТФ в качестве источника энергии чаще всего происходит гидролиз только одной макроэргической связи, при этом выделяется около 50 кДж/моль энергии и опять образуется АДФ. Содержание АТФ в организме человека невелико и составляет около 50 г. учитывая, что клетки не способны накапливать АТФ, а расход энергии происходит постоянно, в организме также постоянно идет синтез АТФ из АДФ и неорганического фосфата Н 3 РО 4 . За сутки в организме человека может синтезироваться до 60 кг АТФ.

В зависимости от источника энергии, обеспечивающего присоединение фосфатного остатка, выделяют два типа фосфорилирования АДФ: окислительное и субстратное.

Субстратное фосфорилирование АДФ идет за счет энергии макроэргических связей соединений (1,3-бисфосфоглицерата и фосфоенолпирувата, сукцинил-СоА). Этот процесс может происходить как в матриксе митохондрий, так и в цитоплазме клеток независимо от присутствия кислорода.

Окислительное фосфорилирование АДФ - превращение АДФ в АТФ происходит с использованием энергии переноса электронов от органических веществ к кислороду. Энергию для окислительного фосфорилирования поставляют ОВР. Процесс может происходить только в аэробных условиях с участием ферментов цепи переноса электронов (ЦПЭ) и АТФ-синтазы.

Окислительное фосфорилирование АДФ – основной механизм синтеза АТФ в организме. Оно происходит в митохондриях, которые являются основными поставщиками АТФ и могут рассматриваться как «энергетические станции» клетки.

Мембраны митохондрий сильно различаются по составу и функциям. Внешняя мембрана свободно проницаема для многих небольших молекул до 5000кДа. Проницаемость внутренней мембраны ограничена и определяется наличием белков-переносчиков. Внутренняя мембрана митохондрии богата белками (80%). В нее включены все ферментные комплексы и компоненты ЦПЭ, отвечающей за окислительное фосфорилирование АДФ.

Одним из самых крупных белков внутренней мембраны митохондрий является АТФ-синтаза.

Это белок, состоящий из двух олигомерных комплексов (F 0 и F 1). F 0 состоит из 6 гидрофобных протомеров типа a, b, c, погруженных во внутреннюю мембрану митохондрий и формирующих Н + - проводящий канал. 3 дополнительные субъединицы связывают комплекс F 0 с комплексом F 1 . Комплекс F 1 выступает в матриксе митохондрии и образует «пузырек» на внутренней поверхности мембраны митохондрии, имеющий активный центр для связывания АДФ иН 3 РО 4 . В нем происходит фосфорилирование и образование АТФ.

Межмембранное пространство также играет роль в производстве АТФ, так как может накапливать протоны, создающие заряд на поверхности внутренней мембраны, необходимый для активации АТФ-синтазы.

Матрикс митохондрий состоит из ферментов, ДНК, РНК и рибосом. ОВР в клетке происходят в матриксе митохондрий. Важнейшими источниками энергии служат реакции дегидрирования. В реакциях дегидрирования электроны и протоны переходят от органических субстратов на коферменты NAD- и FAD-зависимых дегидрогеназ. Электроны, обладающие высоким энергетическим потенциалом, передаются от восстановленных коферментов NADH и FADH 2 к кислороду через цепь переносчиков, локализованных во внутренней мембране митохондрий. Восстановление молекулы О 2 происходит в результате переноса 4 электронов. При каждом присоединении к кислороду 2 электронов, поступающих к нему по цепи переносчиков, из матрикса поглощаются 2 протона, в результате чего образуется молекула Н 2 О.