Влияние метеорологической среды на человека. Атмосферное давление и его влияние на организм человека


Основы физиологии труда и комфортные условия жизнедеятельности.

Физиология труда - это наука, изучающая изменения функционального состояния организма человека под вли­янием его трудовой деятельности и обосновывающая ме­тоды и средства организации трудового процесса, направ­ленные на поддержание высокой работоспособности и со­хранение здоровья работающих.

Основными задачами физиологии труда являются:

Изучение физиологических закономерностей трудо­вой деятельности;

Исследование физиологических параметров организ­ма при различных видах работ;

Жизнедеятельность человека - это способ его существования, и нормальная повседневная деятельность и отдых.

Комфортными называются такие параметры окружающей среды, которые позволяют создать наилучшие для человека условия жизнедеятельности.

1. Освещённость (естественная, искусственная)

2. Микроклимат: Температура воздуха, Относительная влажность, Скорость движения воздуха, Ø Вредные вещества в воздушной среде (пары, газы, аэрозоли), мг/м 3

3. Механические колебания: Вибрации, Шум, ультразвук (то же что и шум)

4. Излучение инфракрасное, ультрафиолетовое, ионизирующее, ультрафиолетовое, ионизирующее, электромагнитное, волны радиочастот,

5. Атмосферное давление

Метеоусловия, их влияние на жизнедеятельность.

Факторами метеорологических условий являются: температура воздуха, его относительная влажность, скорость перемещения воздуха и наличие теплоизлучений.

Оптимальные условия обеспечивают нормальное функционирование организма без напря­жения механизмов терморегуляции.

Вентиляция - это организованный воздухообмен, обеспечивающий удаление загрязненного воздуха и подачу на его место свежего.

Отопление предназначается для поддержания нормальных ме­теорологических условий в производственных помещениях.

Кондиционирование воздуха - это его автоматическая обработ­ка с целью обеспечения необходимых метеорологических условий в помещении, включая температуру, влажность и др.

Влияние микроклимата на организм человека

Микроклимат производственного помещения оказывает значительное влияние на работника. Отклонение отдельных параметров микроклимата от рекомендованных значений, снижают работоспособность, ухудшают самочувствие работника и могут привести к профзаболеваниям.

Температура воздуха. Низкая температура вызывает охлаждение организма и может способствовать возникновению простудных заболеваний. При высокой температуре - перегрев организма, повышенное потовыделение и снижение работоспособности. Работник теряет внимание, что может привести к несчастному случаю.

Повышенная влажность воздуха затрудняет испарение влаги с поверхности кожи и легких, что ведет к нарушению терморегуляции организма, ухудшению состояния человека, снижению работоспособности. При пониженной влажности (< 20%) – сухость слизистых оболочек верхних дыхательных путей.

Скорость движения воздуха . Человек начинает ощущать движение воздуха при v » 0,15 м/сек. Движение воздушного потока зависит от его температуры. При t < 36°С поток оказывает на человека освежающее действие, при t > 40°С неблагоприятное.

Физиологические действия метеорологических условий на человека
Метеорологические условия включают в себя физические факторы, находящиеся во взаимосвязи друг с другом: температура, влажность и скорость воздуха, атмосферное давление, количество осадков, показания геомагнитного поля Земли.

Температура воздуха влияет на теплообмен. При физической нагрузке продолжительное пребывание в сильно нагретом воздухе сопровождается повышением температуры тела, ускорением пульса, ослаблением деятельности сердечно-сосудистой системы, снижением внимания, замедлением скорости реакций, нарушением точности и координации движений, потерей аппетита, быстрой утомляемостью, понижением умственной и физической работоспособности. Низкая температура воздуха, увеличивая теплоотдачу, создает опасность переохлаждения организма, возможность простудных заболеваний. Особенно вредны для здоровья быстрые и резкие перепады температуры.

В атмосферном воздухе постоянно присутствуют водяные пары. Степень насыщения воздуха водяными парами называется влажностью. Одна и та же температура воздуха в зависимости от его влажности ощущается человеком по-разному. К холоду наиболее чувствительны худощавые люди, у них понижается работоспособность, появляется плохое настроение, может быть состояние депрессии. Тучные люди тяжелее переносят жару – испытывают удушье, учащенное сердцебиение, повышается раздражительность. Артериальное давление имеет тенденцию понижаться в жаркие дни, а повышаться в холодные, хотя примерно у одного из трех оно в жару повышается, а понижается в холодные дни. При низких температурах отмечается замедление реакции диабетиков на инсулин.

Для нормального теплоощущения большое значение имеет подвижность и направление воздушного потока воздуха. Наиболее благоприятная скорость движения воздуха в зимний период – 0,15 м/с, а в летний – 0,2–0,3 м/с Воздух, движущийся со скоростью 0,15 м/с вызывает у человека ощущение свежести. Действие ветра на состояние организма связано не с его силой.

При ветре меняются температура, атмосферное давление, влажность, а именно эти перепады сказываются на здоровье человека: появляются тоска, нервозность, мигрень, бессонница, недомогание, учащаются приступы стенокардии.

Изменение электромагнитного поля вызывает обострение сердечно-сосудистых заболеваний, усиливаются нервные расстройства, появляется раздражительность, быстрая утомляемость, тяжелая голова, плохой сон. На воздействие электромагнитных изменений сильнее реагируют мужчины, дети и старики.

Понижение во внешней среде кислорода происходит при вторжении теплой воздушной массы, с повышенной влажностью и температурой, что вызывает ощущение нехватки воздуха, одышку, головокружение. Повышение атмосферного давления, усиливающийся ветер, похолодание ухудшают общее самочувствие, обостряет сердечно-сосудистые заболевания.

Профилактика неблагоприятного воздействия микроклимата

Комплекс физических факторов определяет метеорологические условия (микроклимат) производства.

Микроклимат закрытых помещений определяется климатическими условиями (Крайний Север, Сибирь и т. д.) и сезоном года и зависит от климатических факторов наружной атмосферы: температуры, влажности, скорости движения воздуха, теплового излучения и температуры ограждений, которые должны учитываться при проектировании, выборе строительных материалов, видов топлива, систем отопления, вентиляции и режима их эксплуатации.

Основную роль в тепловом состоянии организма играет температура воздуха, для чего санитарными требованиями определена величина теплового комфорта. Создание искусственного микроклимата направлено на нейтрализацию неблагоприятных климатических факторов и обеспечение определенных тепловых условий, соответствующих зоне теплового комфорта. Для этого производится установка систем и аппаратов кондиционирования воздуха и теплообеспечения, которые могут быть местными (печи) или централизованными (котельная). Средняя температура поверхности нагревательных приборов (радиаторов) должна быть не менее 60–70 °C. Повышенная влажность помещений (сырость) может появиться в результате неправильной эксплуатации зданий – недостаточного отопления и вентиляции, перенаселения, стирки в жилых помещениях.Устранению сырости в жилых помещениях способствует более частое проветривание и лучшее отопление.Окна в комнатах с повышенной влажностью следует в течение всего дня держать незашторенными, обеспечивая этим большую инсоляцию помещения.Стены в сырых помещениях не следует окрашивать масляной краской, так как усиливается конденсация влаги.

Тепловое равновесие организма с окружающей средой поддерживается за счет изменения интенсивности двух процессов – теплопродукции и теплоотдачи. Регуляция теплопродукции происходит главным образом при низких температурах. Более универсальное значение для теплообмена организма с окружающей средой имеет теплоотдача. При повышении температуры воздуха основным путем отдачи тепла становится испарение.

Усиленное потоотделение ведет к потере жидкости, солей и водорастворимых витаминов.

Действие теплового излучения и высокой температуры воздуха может обусловить возникновение ряда патологических состояний: перегревания, теплового удара, солнечного удара, судорожной болезни, заболевания глаз – профессиональной тепловой катаракты («катаракта стеклодувов»).Длительное воздействие нагревающего и в особенности радиационного микроклимата вызывает преждевременное биологическое старение организма.Местное и общее переохлаждение организма является причиной озноблений, невритов, миозитов, радикулитов и заболеваний простудного характера.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
" ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ"
Кафедра безопасности жизнедеятельности
РЕФЕРАТ
на тему: "Влияние производственных метеорологических условий на состояние организме"
ОМСК 2011
Введение
Введение

Исследования, показали, что 80% собственной жизни человек проводит в помещении. Из этих восьмидесяти процентов 40% он проводит на рабочем месте. И от того, в каких условиях любому из нас приходится работать, зависит многое. В воздухе офисных зданий и производственных помещений содержатся многочисленные бактерии, вирусы, частицы пыли, вредные органические соединения, такие как молекулы угарного газа и многие другие вещества, неблагоприятно сказывающиеся на здоровье работников. По статистике, 30% офисных служащих страдают повышенной раздражимостью сетчатки глаза, 25% испытывают систематические головные боли, а у 20% - трудности с дыхательными путями.

Актуальность темы в том, что исключительно важную роль на состояние и самочувствие человека, на его работоспособность оказывает микроклимат, а требования к отоплению, вентиляции и кондинционированию непосредственно влияет на здоровье и производительность человека.
1. Влияние метеорологических условий на организм
Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, влажности воздуха и его подвижности. Параметры микроклимата производственных помещений зависят от теплофизических особенностей технологического процесса, климата, сезона года.

Производственный микроклимат, как правило, отличается большой изменчивостью, неравномерностью по горизонтали и вертикали, разнообразием сочетаний температуры и влажности движения воздуха и интенсивности излучения. Многообразие это определяется особенностями технологии производства, климатическими особенностями местности, конфигурацией зданий, организацией воздухообмена с внешней атмосферой, условий отопления и вентиляции.

По характеру воздействия микроклимата на работающих производственные помещения могут быть: с преобладающим охлаждающим действием и с относительно нейтральным (не вызывающим значительных изменений терморегуляции) действием микроклимата.

Метеорологические условия для рабочей зоны производственных помещений регламентируются ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны" и Санитарными нормами микроклимата производственных помещений (СН 4088-86). В рабочей зоне должны обеспечиваться параметры микроклимата, соответствующие оптимальным и допустимым значениям.

ГОСТ 12.1.005 установлены оптимальные и допустимые микроклиматические условия. При длительном и систематическом пребывании человека в оптимальных микроклиматических условиях сохраняется нормальное функциональное и тепловое состояние организма без напряжения механизмов терморегуляции. При этом ощущается тепловой комфорт (состояние удовлетворения внешней средой), обеспечивается высокий уровень работоспособности. Такие условия предпочтительны на рабочих местах.

Для создания благоприятных условий работы, соответствующих физиологическим потребностям человеческого организма, санитарные нормы устанавливают оптимальные и допустимые метеорологические условия в рабочей зоне помещения.
Нормирование микроклимата в рабочих помещениях осуществляется в соответствии с санитарными правилами и нормами, изложенными в СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений".
Человек может переносить колебания температур воздуха в весьма широких пределах от - 40 - 50 o и ниже до +100 o и выше. Организм человека приспосабливается к столь широкому диапазону колебаний температур окружающей среды посредством регулирования теплопродукции и теплоотдачи человеческого организма. Этот процесс называется терморегуляцией.

В результате нормальной жизнедеятельности организма в нем постоянно происходит образование тепла и его отдача, то есть теплообмен. Тепло образуется вследствие окислительных процессов, из которых две трети падает на окислительные процессы в мышцах. Отдача тепла идет тремя путями: конвекцией, радиацией и испарением пота. В нормальных метеорологических условиях окружающей среды (температура воздуха около 20 o С) конвекцией отдается около 30 %, радиацией - около 45 % и испарением пота - около 25 % тепла.

При низких температурах окружающей среды в организме усиливаются окислительные процессы, увеличивается внутренняя теплопродукция, за счет чего и сохраняется постоянная температура тела. На холоде люди стараются больше двигаться или работать, так как работа мышц ведет к усилению окислительных процессов и увеличению теплопродукции. Дрожь, появляющаяся при длительном нахождении человека на холоде, есть не что иное, как мелкие подергивания мышц, что также сопровождается усилением окислительных процессов и, следовательно, повышением теплопродукции.

Несмотря на то, что организм человека благодаря терморегуляции может приспосабливаться к весьма широкому диапазону колебаний температур, нормальное физиологическое состояние его сохраняется лишь до определенного уровня. Верхняя граница нормальной терморегуляции в полном покое лежит в пределах 38 - 40 o С при относительной влажности воздуха около 30 %. При физической нагрузке или повышенной влажности воздуха этот предел снижается.

Терморегуляция в неблагоприятных метеорологических условиях, как правило, сопровождается напряжением определенных органов и систем, что выражается в изменении их физиологических функций. В частности, при действии высоких температур отмечается повышение температуры тела, что свидетельствует о некотором нарушении терморегуляции. Степень повышения температуры, как правило, зависит от температуры окружающего воздуха и от продолжительности его воздействия на организм. Во время физической работы в условиях высоких температур температура тела увеличивается больше, чем при аналогичных условиях в покое.

1.1 Воздействие температуры воздуха на состояние организма
Температура в производственных помещениях является одним из ведущих факторов, определяющих метеорологические условия производственной среды.

Действие высоких температур почти всегда сопровождается повышенным потоотделением. В неблагоприятных метеорологических условиях рефлекторное потоотделение часто достигает таких размеров, что пот не успевает испаряться с поверхности кожи. В этих случаях дальнейшее увеличение потоотделения ведет не к увеличению охлаждения организма, а к сокращению его, так как водяной слой препятствует снятию тепла непосредственно с кожного покрова. Такое профузное потоотделение называют неэффективным.

Высокая температура окружающего воздуха оказывает большое влияние на сердечно - сосудистую систему. Повышение температуры воздуха выше определенных пределов дает учащение пульса. Установлено, что учащение пульса начинается одновременно с повышением температуры тела, то есть с нарушением терморегуляции. Эта зависимость дает возможность по учащению пульса судить о состоянии терморегуляции при условии отсутствия прочих факторов, оказывающих влияние на частоту сердечных сокращений (физическое напряжение и пр.).

Воздействие на организм высокой температуры вызывает понижение кровяного давления. Это результат перераспределения крови в организме, где происходит отток крови от внутренних органов и глубоких тканей и переполнение периферических, то есть кожных, сосудов.

Под влиянием высокой температуры изменяется химический состав крови, увеличивается удельный вес, остаточный азот, уменьшается содержание хлоридов и углекислоты и т. д. Особое значение в изменении химического состава крови имеют хлориды. При чрезмерном потении в условиях высоких температур хлориды выводятся из организма вместе с потом, вследствие чего нарушается водно-солевой обмен. Значительные нарушения водно-солевого обмена могут привести к так называемой судорожной болезни.

Высокая температура воздуха неблагоприятно действует на функции органов пищеварения и на витаминный обмен.

Длительное и сильное воздействие низких температур может вызвать неблагоприятные изменения в организме человека. Местное и общее охлаждение организма причина многих заболеваний, в том числе и простудных. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к снижению работоспособности.

При воздействии на организм человека отрицательных температур наблюдается сужение сосудов пальцев рук и ног, кожи лица, изменяется обмен веществ. Низкие температуры воздействуют также и на внутренние органы, и длительное воздействие этих температур приводит к их устойчивым заболеваниям.
1.2 Воздействие влажности воздуха на состояние организма
Влажность воздуха, существенно влияя на теплообмен организма с окружающей средой, имеет большое значение для жизнедеятельности человека.

Люди весьма восприимчивы к влажности. От нее зависит интенсивность испарения влаги с поверхности кожи. При высокой влажности, особенно в жаркий день, испарение влаги с поверхности кожи уменьшается и поэтому затрудняется терморегуляция человеческого организма. В сухом воздухе, напротив, происходит быстрое испарение влаги с поверхности кожи, что приводит к высыханию слизистых оболочек дыхательных путей.

В воздухе с большой относительной влажностью испарение замедляется и охлаждение незначительно. Жара труднее переносится при высокой влажности воздуха. В этих условиях затруднен отвод тепла за счет испарения влаги. Поэтому возможен перегрев тела, нарушающий жизнедеятельность организма. Для оптимального теплообмена человеческого организма при температуре 20-25С наиболее благоприятна относительная влажность порядка 50%.

Для хорошего самочувствия и здоровья необходимо, чтобы относительная влажность была в пределах от 40 до 60%. Оптимальная влажность составляет 45%. С началом отопительного сезона влажность воздуха в помещениях значительно снижается. Такие условия вызывают быстрое испарение и высыхание слизистой оболочки носа, гортани, легких, что приводит к простудным и другим заболеваниям.

Высокая влажность также при любой температуре плохо влияет на здоровье человека. Она может возникнуть из-за больших комнатных растений или нерегулярного проветривания.
Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и эрозии, загрязнению болезнетворными микробами. Вода и соли, выделяемые из организма потом, должны замещаться, поскольку их потеря приводит к сгущению крови и нарушению деятельности сердечно-сосудистой системы.
1.3 Воздействие подвижности воздуха на состояние организма
Человек начинает ощущать движение воздуха при его скорости примерно 0,1 м/с. Легкое движение воздуха при обычных температурах воздуха способствует хорошему самочувствию. Большая скорость движения воздуха, особенно в условиях низких температур, вызывает увеличение теплопотерь и ведет к сильному охлаждению организма.
Скорость движения воздуха в пределах 0,25-3 м/с способствует увеличению отдачи тепла с поверхности тела вследствие конвекции, однако при низких температурах окружающего воздуха увеличение скорости движения воздуха может привести к переохлаждению организма.
микроклимат метеорологический производственный рабочий
2. Пути обеспечения нормального микроклимата производственных помещений

Метеорологические условия в рабочих помещениях нормируются по трем основным показателям: температуре, относительной влажности и подвижности воздуха. Эти показатели различны для теплого и холодного периодов года, для различных по тяжести видов работ, выполняемых в этих помещениях (легкие, средней тяжести и тяжелые). Кроме того, нормируются верхние и нижние допустимые пределы этих показателей, которые должны соблюдаться в любом рабочем помещении, а также оптимальные показатели, обеспечивающие наилучшие условия работы.

Человек ощущает воздействие параметров микроклимата комплексно. На этом основано использование для характеристики микроклимата так называемых эффективной и эффективно-эквивалентной температур. Эффективная температура характеризует ощущения человека при одновременном воздействии температуры и движения воздуха. Эффективно-эквивалентная температура учитывает еще и влажность воздуха.

В основу принципа нормирования метеорологических условий производственной среды положена дифференцированная оценка оптимальных и допустимых метеорологических условий в рабочей зоне в зависимости от тепловой характеристики производственного помещения, категории работ по тяжести и времени года.

С учетом этих факторов определено, что для физически легкой работы, выполняемой в помещениях с незначительным избытком тепла в холодное и переходное время года, оптимальные параметры микроклимата должны быть следующими: температура воздуха -- 20-23°С, относительная влажность воздуха 40-60%, скорость движения воздуха не более 0,2 м/сек. Допустимые параметры микроклимата для тех же условий определены в следующем размере: температура воздуха -- 19-25°С, относительная влажность воздуха не более 75%, скорость движения воздуха не более 0,3 м/сек. На тяжелых работах температура воздуха по оптимальным нормам должна быть ниже на 4-5°С, а по допустимым -- на 6°С ниже. В теплый период года температура воздуха предусматривается нормами несколько выше -- на 2-3°С.

Благоприятный микроклимат обеспечивается:
- рациональными объемно-планировочными и конструктивными решениями производственных зданий;
- рациональным размещением цехов, рабочих мест и оборудования;
- герметизацией оборудования; теплоизоляцией нагреваемых поверхностей;
- механизацией и автоматизацией процессов, связанных с избыточным выделением тепла и влаги;
- обеспечением дистанционного управления и наблюдения;
- внедрением более рациональных технологических процессов и оборудования.
Необходима рациональная вентиляция, а в холодное время года -- отопление производственных помещений. Наиболее эффективное средство обеспечения комфортного микроклимата -- кондиционирование воздуха.

Важное направление предупреждения отрицательных последствий неблагоприятного воздействия параметров метеорологических условий на организм человека -- рационализация режимов труда и отдыха, достигаемая сокращением продолжительности рабочей смены, введением дополнительных перерывов, созданием условий для эффективного отдыха в помещениях с нормальными метеорологическими условиями.

Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать задержку тепла - предупреждение выхолаживания производственных помещений, подбор рациональных режимов труда и отдыха, использование средств индивидуальной защиты, а также мероприятия по повышению защитных сил организма.
Профилактике нарушения водного баланса работников в условиях нагревающего микроклимата способствует обеспечение полного возмещения жидкости, различных солей, микроэлементов (магний, медь, цинк, йод и др.), растворимых в воде витаминов, выделяемых из организма с потом.
Для оптимального водообеспечения работающих целесообразно размещать устройства питьевого водоснабжения (установки газированной воды-сатураторы, питьевые фонтанчики, бачки и т.п.) максимально приближенными к рабочим местам, обеспечивая к ним свободный доступ.
Для восполнения дефицита жидкости целесообразно предусматривать выдачу работающим чая, минеральной щелочной воды, клюквенного морса, молочнокислых напитков (обезжиренное молоко, пахта, молочная сыворотка), отваров из сухофруктов при соблюдении санитарных норм и правил их изготовления, хранения и реализации.
Для повышения эффективности возмещения дефицита витаминов, солей, микроэлементов, применяемые напитки следует менять. Не следует ограничивать работников в общем количестве потребляемой жидкости, но объем однократного приема регламентируется (один стакан). Наиболее оптимальной является температура жидкости, равная 12 - 15 °С.
Список использованной литературы
1. ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны"
2. СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений"
Размещено на Allbest.ru

Подобные документы

    Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.

    контрольная работа , добавлен 23.06.2013

    Нормирование метеорологических условий в производственных помещениях. Контроль микроклимата на рабочих местах. Мероприятия по нормализации состояния воздушной среды и защите организма работающих от действия неблагоприятных факторов производства.

    курсовая работа , добавлен 07.01.2011

    Описание микроклимата производственных помещений, нормирование его параметров. Приборы и принципы измерения температуры, относительной влажности и скорости движения воздуха, интенсивности теплового излучения. Установление оптимальных условий микроклимата.

    презентация , добавлен 13.09.2015

    Микроклимат производственных помещений. Температура, влажность, давление, скорость движения воздуха, тепловое излучение. Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

    реферат , добавлен 17.03.2009

    Климат рабочей зоны. Теплоотдача организмом тепла во внешнюю среду. Зависимость количества вырабатываемого организмом тепла от характера и условий деятельности. Метод обобщенного факторного коэффициента микроклимата и учета самочувствия человека.

    лабораторная работа , добавлен 10.11.2013

    Основные понятия и определения. Температурные и волновые характеристики источников излучения. Действие микроклимата на человека. Нормирование метеорологических условий. Защита от не нормальных метеорологических условий.

    реферат , добавлен 06.04.2007

    Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Средства обеспечения надлежащей чистоты и допустимых параметров микроклимата рабочей зоны. Требования к освещению помещений и рабочих мест.

    презентация , добавлен 24.06.2015

    Понятие климатических условий (микроклимата) в рабочей зоне, приборы для их измерения. Параметры микроклимата рабочей зоны по нормативу оптимальных условий для холодного периода. Условия, оптимальные для работ средней тяжести. Оптимизация рабочей зоны.

    лабораторная работа , добавлен 16.05.2013

    Исследование температуры, влажности и скорости движения воздуха в производственных помещениях ООО Абакан-КАМИ. Сопоставление фактических значений параметров микроклимата на предприятии с нормативными. Анализ их влияния на работоспособность персонала.

    курсовая работа , добавлен 13.07.2011

    Микроклимат производственных помещений. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Защита временем при работе в условиях нагревающего микроклимата. Профилактика перегревания организма. Системы и виды производственного освещения.

В статье рассматривается микроклимат производственных помещений, влияние метеорологических условий на организм человека, мероприятия по обеспечению нормированного микроклимата производственных помещений, даны рекомендации по профилактике перегревов и переохлаждений.

Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности. Все эти факторы, или метеорологические условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые - сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних - от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарно - технических устройств.


Микроклимат производственных помещений


Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года - от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.


Согласно гигиеническим требованиям к проектированию вновь строящихся и реконструируемых промышленных предприятий (СП 2.2.1.1312-03) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м 3 ч, и горячие цехи, где они выше этой величины.
Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.
Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.
Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500 o С спектр излучения содержит как видимые - световые лучи, так и невидимые - инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей. Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.
Источники тепла, имеющие температуру 2500 - 3000 o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.
Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолетовыми.
Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным. Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 - 95 % инфракрасных лучей, а поглощают всего 5 - 6 %. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 - 96 % этих лучей, поэтому нагреваются более интенсивно.


Влияние метеорологических условий на организм


Человек может переносить колебания температур воздуха в весьма широких пределах от - 40 - 50 o и ниже до +100 o и выше. Организм человека приспосабливается к столь широкому диапазону колебаний температур окружающей среды посредством регулирования теплопродукции и теплоотдачи человеческого организма. Этот процесс называется терморегуляцией.
В результате нормальной жизнедеятельности организма в нем постоянно происходит образование тепла и его отдача, то есть теплообмен. Тепло образуется вследствие окислительных процессов, из которых две трети падает на окислительные процессы в мышцах. Отдача тепла идет тремя путями: конвекцией, радиацией и испарением пота. В нормальных метеорологических условиях окружающей среды (температура воздуха около 20 o С) конвекцией отдается около 30 %, радиацией - около 45 % и испарением пота - около 25 % тепла.
При низких температурах окружающей среды в организме усиливаются окислительные процессы, увеличивается внутренняя теплопродукция, за счет чего и сохраняется постоянная температура тела. На холоде люди стараются больше двигаться или работать, так как работа мышц ведет к усилению окислительных процессов и увеличению теплопродукции. Дрожь, появляющаяся при длительном нахождении человека на холоде, есть не что иное, как мелкие подергивания мышц, что также сопровождается усилением окислительных процессов и, следовательно, повышением теплопродукции.
В условиях горячих цехов более важное значение имеет отдача тепла организмом. Увеличение теплоотдачи всегда связано с увеличением кровенаполнения периферических кожных сосудов. Об этом свидетельствует покраснение кожных покровов при воздействии на человека повышенной температуры или инфракрасной радиации. Кровенаполнение поверхностных сосудов ведет к повышению температуры кожных покровов, что способствует более интенсивной отдаче тепла в окружающее пространство конвекционным и радиационным путем. Приток крови к кожным покровам активизирует деятельность расположенных в подкожной клетчатке потовых желез, что ведет к увеличению потовыделения и, следовательно, к более интенсивному охлаждению организма. Великий русский ученый И. П. Павлов и его ученики рядом экспериментальных работ доказали, что в основе этих явлений лежат сложные рефлекторные реакции при непосредственном участии центральной нервной системы.
В горячих цехах, где температура окружающего воздуха может достигать высоких величин, где имеется интенсивное инфракрасное излучение, терморегуляция организма осуществляется несколько иначе. Если температура окружающего воздуха равна или выше температуры кожного покрова (32 - 34 o С), человек лишен возможности отдавать избытки тепла конвекционным путем. При наличии нагретых предметов и других поверхностей в цехе, особенно при инфракрасном излучении, весьма затруднен и второй путь теплообмена - радиация. Таким образом, в этих условиях терморегуляция крайне затруднена, так как основная нагрузка падает на третий путь - теплоотдачи испарением пота. В условиях повышенной влажности, наоборот, затруднен третий путь теплоотдачи - испарением пота -и отдача тепла происходит конвекцией и радиацией. Наиболее тяжелые условия терморегуляции создаются при сочетании высокой температуры окружающей среды и повышенной влажности воздуха.
Несмотря на то, что организм человека благодаря терморегуляции может приспосабливаться к весьма широкому диапазону колебаний температур, нормальное физиологическое состояние его сохраняется лишь до определенного уровня. Верхняя граница нормальной терморегуляции в полном покое лежит в пределах 38 - 40 o С при относительной влажности воздуха около 30 %. При физической нагрузке или повышенной влажности воздуха этот предел снижается.
Терморегуляция в неблагоприятных метеорологических условиях, как правило, сопровождается напряжением определенных органов и систем, что выражается в изменении их физиологических функций. В частности, при действии высоких температур отмечается повышение температуры тела, что свидетельствует о некотором нарушении терморегуляции. Степень повышения температуры, как правило, зависит от температуры окружающего воздуха и от продолжительности его воздействия на организм. Во время физической работы в условиях высоких температур температура тела увеличивается больше, чем при аналогичных условиях в покое.
Действие высоких температур почти всегда сопровождается повышенным потоотделением. В неблагоприятных метеорологических условиях рефлекторное потоотделение часто достигает таких размеров, что пот не успевает испаряться с поверхности кожи. В этих случаях дальнейшее увеличение потоотделения ведет не к увеличению охлаждения организма, а к сокращению его, так как водяной слой препятствует снятию тепла непосредственно с кожного покрова. Такое профузное потоотделение называют неэффективным.
Величина потоотделения у рабочих горячих цехов достигает 3 - 5 л за смену, а при более неблагоприятных условиях она может достигать 8 - 9 л за смену. Обильное потение ведет к значительной потере влаги организмом.
Высокая температура окружающего воздуха оказывает большое влияние на сердечно - сосудистую систему. Повышение температуры воздуха выше определенных пределов дает учащение пульса. Установлено, что учащение пульса начинается одновременно с повышением температуры тела, то есть с нарушением терморегуляции. Эта зависимость дает возможность по учащению пульса судить о состоянии терморегуляции при условии отсутствия прочих факторов, оказывающих влияние на частоту сердечных сокращений (физическое напряжение и пр.).
Воздействие на организм высокой температуры вызывает понижение кровяного давления. Это результат перераспределения крови в организме, где происходит отток крови от внутренних органов и глубоких тканей и переполнение периферических, то есть кожных, сосудов.
Под влиянием высокой температуры изменяется химический состав крови, увеличивается удельный вес, остаточный азот, уменьшается содержание хлоридов и углекислоты и т. д. Особое значение в изменении химического состава крови имеют хлориды. При чрезмерном потении в условиях высоких температур хлориды выводятся из организма вместе с потом, вследствие чего нарушается водно-солевой обмен. Значительные нарушения водно-солевого обмена могут привести к так называемой судорожной болезни.
Высокая температура воздуха неблагоприятно действует на функции органов пищеварения и на витаминный обмен.
Таким образом, высокая температура воздуха (выше допустимого предела) оказывает неблагоприятное влияние на жизненно важные органы и системы человека (сердечно-сосудистую, центральную нервную систему, пищеварительную), вызывая нарушения нормальной их деятельности, а при наиболее неблагоприятных условиях может вызвать серьезные заболевания в виде перегревания организма, называемые в быту тепловыми ударами.


Пути обеспечения нормального микроклимата производственных помещений,
профилактика перегревов и переохлаждений


Метеорологические условия в рабочих помещениях нормируются по трем основным показателям: температуре, относительной влажности и подвижности воздуха. Эти показатели различны для теплого и холодного периодов года, для различных по тяжести видов работ, выполняемых в этих помещениях (легкие, средней тяжести и тяжелые). Кроме того, нормируются верхние и нижние допустимые пределы этих показателей, которые должны соблюдаться в любом рабочем помещении, а также оптимальные показатели, обеспечивающие наилучшие условия работы.
Мероприятия по обеспечению нормальных метеорологических условий на производстве, как и многие другие, носят комплексный характер. Существенную роль в этом комплексе играют архитектурно - планировочное решения производственного здания, рациональное построение технологического процесса и правильное использование технологического оборудования, применение ряда санитарно-технических устройств и приспособлений. Помимо этого, используются меры индивидуальной защиты и личной гигиены. Это радикально не улучшает метеорологических условий, но защищает рабочих от их неблагоприятного воздействия.
Оздоровление условий труда в горячих цехах
Планировка помещений горячих цехов должна обеспечивать свободный доступ свежего воздуха ко всем участкам цеха. Наиболее рациональны в гигиеническом отношении мало пролетные здания. В многопролетных зданиях средние пролеты, как правило, проветриваются хуже крайних, поэтому при проектировании горячих цехов всегда следует сокращать число пролетов до минимума. Для свободного поступления наружного, более холодного воздуха и, следовательно, для лучшего проветривания помещений весьма важно оставлять максимальное количество свободного от застроек периметра стен. Иногда пристройки сосредоточиваются в одном месте и создают неблагоприятные условия для доступа свежего воздуха на определенном участке. Во избежание этого пристройки следует размещать на небольших участках с разрывами, лучше с торцов здания и, как правило, не у горячего оборудования. Крупные пристройки, которые по технологическим или другим требованиям должны быть связаны непосредственно с горячим цехом, например бытовые, лаборатории, лучше строить отдельно и соединять лишь узким коридором.
Оборудование в горячем цехе нужно размещать таким образом, чтобы все рабочие места хорошо проветривались. Необходимо избегать параллельного размещения горячего оборудования и других источников тепловыделения, так как в этих случаях рабочие места и вся зона, расположенная между ними, плохо проветривается, свежий воздух, проходя над источниками тепловыделения, приходит на рабочее место в нагретом состоянии. Аналогичное положение создается, если горячее оборудование находится у глухой стены. С гигиенической точки зрения наиболее целесообразно располагать его вдоль наружных стен, снабженных оконными и другими проемами, с основной зоной обслуживания - рабочими местами - со. стороны этих стен. Не рекомендуется рядом с горячим оборудованием располагать рабочие места, на которых производятся холодные работы (вспомогательные, подготовительные, ремонтные и др.).
Для защиты крыши зданий от солнечной радиации и, следовательно, от передачи тепла внутрь зданий перекрытие верхнего этажа хорошо тепло изолируется. В солнечные летние дни хороший эффект дает мелкое разбрызгивание воды по всей поверхности крыши.
На летний период стекла окон, фрамуг, фонарей и других проемов целесообразно покрывать непрозрачной белой краской (мелом). Если оконные проемы открываются для проветривания, их следует зашторивать белой редкой тканью. Наиболее рационально в открытых оконных проемах оборудовать жалюзи, которые пропускают рассеянный свет и воздух, но преграждают путь прямым солнечным лучам. Подобные жалюзи изготовляются из полосок непрозрачной пластмассы или тонкой листовой жести, окрашенных в светлые тона. Длина полосок - во всю ширину окна, ширина - 4 - 5 см. Полоски укрепляются под углом 45 o с интервалом, равным ширине полоски, горизонтально по всей высоте окна.
Для охлаждения воздуха, поступающего в цех в теплый период года, целесообразно производить мелкое распыление воды при помощи специальных форсунок в открытых въездных и оконных проемах, в приточных венткамерах и вообще в верхней зоне цеха, если это не мешает нормальному технологическому процессу. Полезно также периодически опрыскивать пол цеха водой.
Чтобы предупредить сквозняки в зимний период, все въездные и другие часто открывающиеся проемы оборудуются тамбурами или воздушными завесами. Чтобы холодные потоки воздуха не попадали непосредственно на рабочие места, последние в холодный период года целесообразно экранировать со стороны открывающихся проемов щитами на высоту около 2 м.
Существенную роль в оздоровлении условий труда играют механизация и автоматизация технологических процессов. Эта позволяет удалить рабочее место от источников тепловыделений, а нередко и значительно сократить их воздействие. Рабочие освобождаются от тяжелой физической работы.
При механизации и автоматизации процессов появляются новые виды профессий: машинисты и операторы Труд их характеризуется значительным нервным напряжением. Для этих рабочих необходимо создать наиболее благоприятные условия труда, так как сочетание нервного напряжения с неблагоприятным микроклиматом особенно вредно.
Мероприятия по борьбе с избытками тепла направляются на максимальное сокращение их выделения, так как легче предупредить избытки тепла, чем удалить их из цеха. Наиболее эффективным способом борьбы с ними является изоляция источников тепловыделений. Санитарными нормами установлено, что температура наружных поверхностей источников тепловыделений в зоне расположения рабочих мест не должна превышать 45 o С, а прй температуре внутри них менее 100 o С - не более 35 o С. Если добиться этого путем теплоизоляции невозможно, рекомендуется экранировать эти поверхности и применять другие санитарно-технические меры.
Учитывая, что инфракрасная радиация действует не только на рабочих, а нагревает все окружающие предметы и ограждения и создает тем самым весьма значительные источники вторичного выделения тепла, целесообразно горячее оборудование и источники инфракрасного излучения экранировать не только на участках размещения рабочих мест, а по возможности по всему периметру.
Для изоляции источников тепла применяются обычные термоизоляционные материалы, обладающие низкой теплопроводностью. К ним относятся пористый кирпич, асбест, специальные глины с примесью, асбеста и т. п. Лучший гигиенический эффект дает водяное охлаждение наружных поверхностей горячего оборудования. Оно применяется в виде водяных рубашек или системы труб, покрывающих снаружи горячие поверхности. Вода, циркулирующая по системе труб, отбирает тепло с горячей поверхности и не допускает выделения его в помещение цеха. Для экранирования примеряются щиты высотой не менее 2 м, поставленные параллельно горячей поверхности на небольшом расстоянии от нее (5 - 10 см). Подобные щиты препятствуют распространению конвекционных токов нагретого воздуха от горячей поверхности в окружающее пространство. Конвекционные токи направляются вверх по щели, образованной горячей поверхностью и щитом, и нагретый воздух, минуя рабочую зону, уходит наружу через аэрационные фонари и другие проемы. Для удаления тепловыделений от небольших источников тепла или от локализованных (ограниченных) мест его выделения можно использовать местные укрытия (зонты, кожухи) с механическим или естественным отсосом.
Описанные мероприятия не только снижают тепловыделения конвекционным путем, они приводят также к снижению интенсивности инфракрасного излучения.
Для защиты рабочих от инфракрасного облучения применяется ряд специальных устройств и приспособлений. Большинство из них представляет собой экраны различной конструкции, которые защищают рабочего от прямого облучения. Они устанавливаются между рабочим местом и источником излучения. Экраны могут быть стационарными и переносными.
В тех случаях, когда рабочий не должен наблюдать за горячим оборудованием или другим источником излучения (слитком, прокатом и т. п.), экраны делаются из непрозрачного материала (асбофанеры, жести). Во избежание нагрева под действием инфракрасных лучей целесообразно их поверхность, обращенную к источнику излучения, покрывать полированной жестью, алюминием или оклеить алюминиевой фольгой. Экраны из жести, как и щиты у нагретых поверхностей, делаются двух или (лучше) трехслойными с воздушной прослойкой между каждым слоем в 2 - 3 см.
Наиболее эффективны экраны с водяным охлаждением. Они состоят из двух металлических стенок, соединенных между собой герметично по всему периметру; между стенками циркулирует холодная вода, подаваемая из водопровода специальной трубкой и стекающая с противоположного края экрана по выпускной трубе в канализацию. Такие экраны, как правило, полностью снимают инфракрасное облучение.
Если обслуживающий персонал должен наблюдать за работой оборудования, механизмов или за ходом процесса, используются прозрачные экраны. Простейшим экраном данного типа может служить обычная мелкая металлическая сетка (сечение ячейки 2 - 3 мм), которая сохраняет видимость и снижает интенсивность облучения в 2 - 2,5 раза.
Более эффективны водяные завесы: они снимают инфракрасную радиацию почти полностью. Водяная завеса представляет собой тонкую водяную пленку, которая образуется при равномерном стекании воды с гладкой горизонтальной поверхности. С боков водяная пленка ограничивается рамкой, а снизу вода собирается в приемный желоб и специальным стоком отводится в канализацию. Подобная водяная завеса абсолютно прозрачна. Однако оборудование ее требует особой точности выполнения всех элементов и их наладки. Эти условия не всегда выполняются, в силу чего может нарушаться работа завесы (пленка “рвется”).
Более проста в изготовлении и эксплуатации водяная завеса с сеткой. Вода стекает по металлической сетке, поэтому водяная пленка более прочная. Однако эта завеса несколько снижает видимость, поэтому она может применяться лишь в тех случаях, когда не требуется особо точного наблюдения. Загрязнение сетки ведет к еще большему ухудшению видимости. Особенно неблагоприятно, сказывается загрязнение сетки смазочными и другими маслами. В этих случаях сетка не смачивается водой, и пленка начинает “рваться”, рябить, ухудшается видимость и проходит часть инфракрасных лучей. Поэтому сетку этой водяной завесы следует содержать в чистоте, периодически промывать горячей водой с мылом и щеткой. В Киевском институте гигиены труда и профзаболеваний разработан аквариальный экран, предназначенный для защиты от облучения рабочих, находящихся в замкнутых пространствах: за пультом управления, в кабинах кранов и т. п. Эти экраны построены по тому же принципу, что и описанные выше непрозрачные экраны с водяным охлаждением, но боковые стенки в данном случае изготовлены не из металла, а из стекла. Для того чтобы на внутренней части стекол не оседали соли и тем самым не нарушали видимости, внутри экрана должна циркулировать дистиллированная вода. Эти экраны полностью сохраняют прозрачность, однако они требуют весьма аккуратного обращения, так как малейшее повреждение может вывести их из строя (бой стекол и вытекание воды).
Для снятия тепла и конвекционного и лучистого, воздействующего на рабочего, в горячих цехах широко применяется воздушное душирование, начиная от настольного вентилятора и кончая мощными промышленными аэраторами и приточными вентиляционными системами с подачей воздуха непосредственно на рабочее место. Для этой цели используются как простые, так и аэраторы с распылением воды, повышающей охлаждающий эффект за счет ее испарения.
Рациональное оборудование мест отдыха играет важную роль. Они располагаются вблизи основных рабочих мест, чтобы рабочие могли пользоваться ими даже при кратковременных перерывах. В то же время места отдыха должны быть удалены от горячего оборудования и других источников выделения тепла. Если удалить их невозможно, необходимо тщательно изолировать от влияния конвекционного тепла, инфракрасного излучения и других неблагоприятных факторов. Места отдыха оборудуются удобными скамейками со спинками. В теплый период года туда следует подавать свежий охлажденный воздух. Для этого оборудуется местная приточная вентиляция или устанавливаются аэраторы с водяным охлаждением. Крайне желательно на местах отдыха установить полудуши для принятия гидропроцедур и приблизить будку с подсоленной газированной водой или доставлять воду на места отдыха в специальных баллонах.
Еще институтом гигиены труда и профзаболеваний АМН СССР был разработан ряд способов радиационного охлаждения. Простейшие полузакрытые кабины радиационного охлаждения состоят из двойных металлических стен и крыши. В пространстве между двумя слоями стен циркулирует холодная артезианская вода и охлаждает их поверхность. Кабины делаются небольших размеров, внутренний размер их равен 85 x 85 см, высота - 180 - 190 см. Небольшие габариты кабины позволяют установить ее на большинстве стационарных рабочих мест.
По такому же принципу выполнена конструкция кабины отдыха- типа водяной завесы. Она изготовлена из металлической сетки, по которой стекает вода в виде сплошной водяной пленки. Эта кабина удобна тем, что рабочий, находясь в ней, может наблюдать за технологическим процессом, работой оборудования и т. п.
Более сложным устройством является специально оборудованная комната для группового отдыха. Размер ее может достигать 15 - 20 м 2 . Панели стен на высоту 2 м покрыты системой трубопроводов, по которым от компрессора подается аммиачный раствор или другой хладагент, снижающий температуру поверхности труб. Наличие большой холодной поверхности в такой комнате обеспечивает весьма ощутимую отрицательную радиацию и охлаждение воздуха.

Теги: Охрана труда, работник, микроклимат производственных помещений, влияние метеорологических условий, организм человека, мероприятия по обеспечению нормированного микроклимата, профилактика перегревов и переохлаждений

Метеорологические условия производственных помещений (микроклимат) оказывают большое влияние на самочувствие человека и на производительность его труда.

Для совершения различных видов работы человеку необходима энергия, которая высвобождается в его организме в процессах окислительно-восстановительного распада углеводов, белков, жиров и других органических соединений, содержавшихся в продуктах питания..

Высвобожденная энергия частично расходуется на совершение полезной работы, а частично (до 60 %) рассеивается в виде теплоты в живых тканях, нагревая тело человека.

При этом благодаря механизму терморегуляции температура тела поддерживается на уровне 36,6 °С. Терморегуляция осуществляется тремя способами: 1) изменением скорости окислительных реакций; 2) изменением интенсивности кровообращения; 3) изменением интенсивности потовыделения. Первым способом регулируется выделение теплоты, вторым и третьим способами - теплоотвод. Допускаемые отклонения температуры человеческого тела от нормальной весьма незначительны. Максимальная температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная - плюс 25 °С.

Для обеспечения нормального функционирования организма необходимо, чтобы вся выделяемая теплота отводилась в окружающую среду, а изменения параметров микроклимата находились в пределах зоны комфортных условий труда. При нарушении комфортных условий труда наблюдается повышенная утомляемость, снижается производительность труда, возможны перегрев или переохлаждение организма, а в особо тяжелых случаях наступает потеря сознания и даже смерть.

Отвод теплоты от тела человека в окружающую среду Q осуществляется конвекцией Q конв в результате нагрева воздуха, омывающего тело человека, инфракрасным излучением на окружающие поверхности с более низкой температурой Q изл, испарением влаги с поверхности кожи (пот) и верхних дыхательных путей Q исп. Комфортные условия обеспечиваются при соблюдении теплового баланса:

Q =Q конв + Q ииз +Q исп

При нормальной температуре и небольшой скорости воздуха в помещении человек, находящийся в состоянии покоя, теряет теплоту: в результате конвекции - около 30 %, излучением - 45 %, испарением -25 %. Это соотношение может изменяться, так как процесс отдачи теплоты зависит от многих факторов. Интенсивность конвективного теплообмена определяется температурой окружающей среды, подвижностью и влагосодержанием воздуха. Излучение теплоты от тела человека на окружающие поверхности может происходить только в том случае, если температура этих поверхностей ниже температуры поверхности одежды и открытых частей тела. При высоких температурах окружающих поверхностей процесс теплоотдачи излучением идет в обратном направлении - от нагретых поверхностей к человеку. Количество теплоты, отводимого при испарении пота, зависит от температуры, влажности и скорости движения воздуха, а также от интенсивности физической нагрузки.



Человек обладает наибольшей работоспособностью, если температура воздуха находится в пределах 16-25 °С. На изменение температуры окружающего воздуха человеческий организм благодаря механизму терморегуляции отзывается сужением или расширением кровеносных сосудов, расположенных у поверхности тела. При снижении температуры кровеносные сосуды сужаются, приток крови к поверхности уменьшается и соответственно уменьшается отвод теплоты конвекцией и излучением. Противоположная картина наблюдается при повышении температуры окружающего воздуха: кровеносные сосуды расширяются, приток крови увеличивается и соответственно увеличивается теплоотдача в окружающую среду. Однако при температуре порядка 30 - 33 °С, близкой к температуре тела человека, отвод теплоты конвекцией и излучением практически прекращается, и большая часть теплоты отводится путем испарения пота с поверхности кожи. В этих условиях организм теряет много влаги, а с ней и соли (до 30-40 г в сутки). Потенциально это очень опасно, и поэтому должны приниматься меры для компенсации этих потерь.

Например, в горячих цехах рабочие получают подсоленную (до 0,5 %) газированную воду.

Большое влияние на самочувствие человека и связанные с ним процессы терморегуляции оказывают влажность и скорость воздуха.

Относительная влажность воздуха φ выражается в процентах и представляет собой отношение фактического содержания (г/м 3) паров воды в воздухе (D) к максимально возможному влагосодержанию при данной температуре (Dо):

или отношение абсолютной влажностью Р n (парциальное давление водяных паров в воздухе, Па) к максимально возможной Р max при данных условиях (давление насыщенных паров)

(Парциальное давление –давление компонента идеальной газовой смеси, которое он оказывал бы, если бы занимал один объем всей смеси).

От влажности воздуха напрямую зависит отвод тепла при потовыделении, так как тепло отводится только в том случае, если выделяющийся пот испаряется с поверхности тела. При повышенной влажности (φ > 85 %) испарение пота снижается вплоть до полного его прекращения при φ = 100 %, когда пот каплями стекает с поверхности тела. Такое нарушение теплоотвода может привести к перегреву организма.

Пониженная влажность воздуха (φ < 20 %), наоборот, сопровождается не только быстрым испарением пота, но и усиленным испарением влаги со слизистых оболочек дыхательных путей. При этом наблюдается их пересыхание, растрескивание и даже загрязнение болезнетворными микроорганизмами. Сам же процесс дыхания может сопровождаться болевыми ощущениями. Нормальная величина относительной влажности 30-60 %.

Скорость движения воздуха в помещении заметно влияет на самочувствие человека. В теплых помещениях при малых скоростях движения воздуха отвод тепла конвекцией (в результате омывания тепла потоком воздуха) очень затруднен и может наблюдаться перегрев организма человека. Увеличение скорости воздуха способствует увеличению отдачи теплоты, и это благотворно сказывается состоянии организма. Однако при больших скоростях движения воздуха создаются сквозняки, которые ведут к простудным заболеваниям как при высоких, так и при низких температурах в помещении.

Скорость воздуха в помещении устанавливают в зависимости от времени года и некоторых других факторов. Так, например, для помещений без значительных выделений теплоты скорость воздуха в зимнее время устанавливается в пределах 0,3-0,5 м/с, а в летнее время - 0,5-1 м/с.

В горячих цехах (помещениях с температурой воздуха более 30 °С) для защиты человека от воздействия теплового излучения применяется так называемый воздушный душ. В этом случае на работающего направляется струя увлажненного воздуха, скорость которой может доходить до 3,5 м/с.

Значительное влияние на жизнедеятельность человека оказывает атмосферное давление . В естественных условиях у поверхности Земли атмосферное давление может колебаться в пределах 680-810 мм рт. ст., но практически жизнедеятельность абсолютного большинства населения протекает в более узком интервале давлений: от 720 до 770 мм рт. ст. Атмосферное давление быстро уменьшается с ростом высоты: на высоте 5 км оно составляет 405, а на высоте 10 км - 168 мм рт. ст. Для человека снижение давления потенциально опасно, причем опасность представляет как само уменьшение давления, так и скорость его изменения (при резком снижении давления возникают болезненные ощущения).

При снижении давления ухудшается поступление кислорода в организм человека в процессе дыхания, но до высоты 4 км человек за счет увеличения нагрузки на легкие и сердечно-сосудистую систему сохраняет удовлетворительное самочувствие и работоспособность. Начиная с высоты 4 км поступление кислорода снижается настолько, что может наступить кислородное голодание - гипоксия . Поэтому при нахождении на больших высотах используются кислородные приборы, а в авиации и космонавтике - скафандры. Кроме того, в летательных аппаратах прибегают к герметизации кабин. В некоторых случаях, например при выполнении водолазных работ или проходке туннелей в водонасыщенных грунтах, работающие находятся в условиях повышенного давления. Поскольку растворимость газов в жидкостях с повышением давления растет, кровь и лимфа работающих насыщаются азотом. Это создает потенциальную опасность так называемой «кессонной болезни», которая развивается тогда, когда происходит быстрое снижение давления. В этом случае азот выделяется с большой скоростью и кровь как бы «вскипает». Образующиеся пузырьки азота закупоривают мелкие и средние кровеносные сосуды, причем этот процесс сопровождается резкими болевыми ощущениями («газовая эмболия»). Нарушения в жизнедеятельности организма могут быть столь серьезными, что иногда приводят к смертельному исходу. Чтобы избежать опасных последствий, снижение давления проводят медленно, в течение многих суток, с тем чтобы избыточный азот удалялся естественным путем при дыхании через легкие.

Для создания нормальных метеоусловий в производственных помещениях осуществляются следующие мероприятия:

механизация и автоматизация тяжелых и трудоемких работ, что позволяет освободить рабочих от выполнения тяжелой физической нагрузки, сопровождающейся значительным выделением теплоты в организме человека;

дистанционное управление теплоизлучающими процессами и аппаратами, что дает возможность исключить пребывание работающих в зоне интенсивного теплового излучения;

вынос оборудования со значительным выделением тепла на открытые площадки; при установке такого оборудования в закрытых Помещениях необходимо по возможности исключить направление лучистой энергии на рабочие места;

теплоизоляция горячих поверхностей; теплоизоляцию рассчитывают таким образом, чтобы температура внешней поверхности теплоизлучающего оборудования не превышала 45 °С;

установка теплозащитных экранов (теплоотражающих, теплопоглощающих и теплоотводящих);

устройство воздушных завес или воздушного душирования;

устройство различных систем вентиляции и кондиционирования;

устройство в помещениях с неблагоприятным температурным режимом специальных мест для кратковременного отдыха; в холодных цехах это обогреваемые помещения, в горячих - помещения, в которые подается охлажденный воздух.

В процессе деятельности человек находится под влиянием определенных метеорологических условий или микроклимата. К основным показателям микроклимата относятся температура, относительная влажность, скорость движения воздуха. Существенное влияние на параметры микроклимата и состояние человеческого организма оказывает интенсивность теплового излучения различных нагретых поверхностей.

Относительная влажность воздуха представляет собой отношение фактического количества паров воды в воздухе при данной температуре к количеству водяного пара, насыщающего воздух при этой температуре.

Если в помещении находятся различные источники тепла, температура которых превышает температуру человеческого тела, то тепло от них самопроизвольно переходит к менее нагретому телу, т.е. человеку. Различают три способа распространения тепла: теплопроводность, конвекцию, тепловое излучение.

Теплопроводность- перенос тепла вследствие беспорядочного теплового движения микрочастиц (атомов, молекул, электронов).

Конвекция – перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости.

Тепловое излучение – процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тела. В реальных условиях тепло передается комбинированным способом. Человек постоянно находится в состоянии теплового взаимодействия с окружающей средой. Для нормального протекания физиологических процессов в организме человека требуется поддержание практически постоянной температуры тела. Способность организма к поддержанию постоянной температуры называется терморегуляция (отвод выделяемого тепла в окружающее пространство).

Влияние температуры окружающего воздуха на человеческий организм в первую очередь с сужением и расширением кровеносных сосудов кожи. По действием низких температур сосуды сужаются, в результате чего замедляется поток крови к поверхности тела и снижается теплоотдача от поверхности тела за счет конвекции и излучения. При высоких температурах наблюдается обратная картина.

Повышенная влажность затрудняет теплообмен между организмом человека и внешней средой вследствие уменьшения испарения влаги с поверхности кожи, а низкая влажность приводит к пересыханию слизистых оболочек дыхательных путей. Движение воздуха улучшает теплообмен между телом и внешней средой.

Постоянное отклонение от нормальных параметров микроклимата приводит к перегреву или переохлаждению человеческого организма и связанным с ними негативным последствиям: обильному потоотделению, учащению пульса и дыхания, головокружению, появлению судорог, тепловому удару.

В нормативных документах введены понятия оптимальные и допустимые параметры микроклимата.

Радиация:первая помощь

Радиация – неотъемлемая часть окружающей среды. Она попадает в окружающую среду из природных источников, созданных человеком (атомные станции, испытания ядерного оружия). К природным источникам радиации относятся: космическое излучение, радиоактивные породы, радиоактивные химические вещества и элементы, обнаруженные в пище и воде. Ученые называют все виды природной радиации термином «радиационный фон».

Другие формы радиации поступают в природу в результате деятельности человека. Люди получают различные дозы радиации во время медицинского и стоматологического рентгена.

Радиоактивность и сопутствующие ей излучения существовали во Вселенной постоянно. Радиоактивные материалы входят в состав Земли, и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества. Самое неприятное свойство радиоактивного излучения – его воздействие на ткани живого организма, поэтому необходимы измерительные приборы, которые давали бы оперативную информацию.

Особенность ионизирующего излучения состоит в том, что его воздействие человек начнет ощущать лишь по прошествии некоторого времени. Различные виды излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Альфа-излучение задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей, водой или воздухом, тогда они становятся чрезвычайно опасными.

Бета-частица обладает большей проникающей способностью: она проходит в ткани организма на глубину 1-2 см и более, в зависимости от величины энергии. Проникающая способность гамма-излучения очень велика, распространяется со скоростью света: его может задержать лишь толстая свинцовая или бетонная плита.

Можно принимать меры по защите, но полностью освободиться от воздействия радиации практически невозможно. Уровень радиации на Земле разный.

Если источники ионизирующего излучения попали при дыхании, с питьевой водой или пищей, то такое излучение называется внутренним.

Из всех естественных источников радиации наибольшую опасность представляет радон – тяжелый газ без вкуса, запаха и, при этом, невидимый: со своими дочерними продуктами. Радон высвобождается из земной коры повсеместно, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения.

Самые распространенные стройматериалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья. Еще одним источником поступления радона в жилые помещения является вода и природный газ. Вода из глубоких колодцев или артезианских скважин содержит очень много радона. При кипении или приготовлении горячих блюд радон практически полностью улетучивается. Большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом в ванной комнате или парилке.

Другие источники радиации, к сожалению, созданы самим человеком. Источниками искусственной радиации служат созданные с помощью ядерных реакторов и ускорителей искусственные радионуклеиды, пучки нейронов и заряженных частиц. Они получили название – техногенные источники ионизирующего излучения.

Чрезвычайные ситуации, типа Чернобыльской аварии, могут оказать неконтролируемое воздействие на человека

Высокие дозы радиации представляют смертельную угрозу для человека. Полученная доза в 500 бэр или больше убивает практически любого человека в течение нескольких недель. Доза в 100 бэр может привести к серьезной лучевой болезни. Радиация способствует увеличению раковых заболеваний и вызывает различные дефекты плода.

Ученые утверждают, что человек в среднем ежегодно получает суммарную дозу радиации равную 150-200 милибэр. Большая часть радиации (около 80 миллибэр) поступает из естественных источников радиации или в результате медицинского обследования (около 90 миллибэр). Облучение, полученное вследствие проведения научных исследований составляет 1 миллибэр, от эксплуатации ядерных установок – 4-5, от использования бытовых приборов – 4-5 миллибэр. Доза излучения в воздухе измеряется в рентгенах, а доза, поглащенная живыми тканями, - в радах. Для оценки интенсивности заражения местности введено понятие «мощность дозы радиационного излучения» ЕЕ измеряют в рентгенах (Р), миллирентгенах (мР), микроренгенах (мкР) за час. С момента заражения территории при каждом семикратном увеличении времени уровень радиации снижается в 10 раз. Если через час уровень радиации на местности был 100Р/ч, то через 7 ч он будет равен 10 Р/ч, а через 49ч – 1 Р/ч.