Проект на тему "электрический ток и его применение в электронике". Исследовательская работа на тему: «Почему загорается лампочка Проект объект исследования работа тока


Исследовательский проект на тему:

«Природное электричество»

МОУ «СОШ «Патриот» с кадетскими классами

Руководитель проекта: Чаплыгина Ольга Владимировна,

учитель начальных классов МОУ «СОШ «Патриот» с

кадетскими классами»

Информационный лист

(Введение, актуальность, задачи и цели проекта и т.д.)

1 этап-организационный

Сбор информации

Анкетирование учащихся 4 «А», 4 «Б», 4 «В» классов. Анализ анкетирования

Выводы I этапа

2 этап- теоретический

Что такое электричество?

История открытия электричества.

Электричество в природе.

Выводы II этапа

Правила безопасности для детей, связанные с использованием электричества

3 этап-практический

Выводы III этапа

Заключение

Список используемой литературы

Приложение

Тема проекта: «Природное электричество».

Проблема (идея) проекта.

Не все мои одноклассники знают о существовании природного электричества. Идея проекта была узнать, что такое природное электричество, раскрыть возможности природного электричества.

Цель проекта:

узнать, что такое природное электричество, раскрыть возможности природного электричества.

Задачи:

изучить литературу по данной теме

найти из научных источников историю открытия электричества

узнать, что такое природное электричество

изучить правила безопасности связанные с использованием электричества

провести эксперимент по получению электричества из овощей фруктов в домашних условиях.

доказать существование природного электричества.

выпустить брошюру.

Вид проекта:

по комплектности: межпредметный

по количеству участников: индивидуальный

по продолжительности: краткосрочный.

Гипотеза:

Так как в овощах и фруктах много сока, а он представляет собой кислоту (такую же, как в обычных батарейках и аккумуляторах), то воткнув в них металлические пластины можно получить электричество.

Сроки реализации. Исследовательский проект реализуется в период с 25. 01.2018 года по 03.02.2018 года.

Ожидаемый результат в рамках исследовательского проект.

Я больше узнаю о природном электричестве.

Познакомлю одноклассников с историй возникновения электричества, раскрою возможности природного электричества,

Сделаю выводы по данной теме.

Попробую сам выполнить все эксперименты, соблюдая технику безопасности.

Перспектива

Изучение научной литературы

Изучение данной темы позволит больше узнать об окружающем нас мире.

Этапы выполнения исследовательской работы.

1 этап - организационный

Объект исследования: электрический ток

Предмет исследования:

природное электричество

переменный ток

Методы исследования:

Изучение литературных источников

Анкетирование

Наблюдение

Сравнение

Физические опыты обобщение

Анкетирование учащихся 4 «А», 4 «Б», 4 «В» классов, учителя, родители.

Результаты анкетирования показали:

учащихся 4 «А», 4 «Б». «В» классов - 70%

учителя МОУ «СОШ «Патриот» с кадетскими классами» - 100%

родители учащихся 4 «В» класса - 100 %

Вывод:

проанализировав опрос, я пришёл к выводу, что часть учеников нашего класса имеют некоторое представление о природном электричестве.

большинство опрошенных знают о природном электричестве и почти все хотели бы узнать результаты моих опытов и подтверждений моей гипотезы.

родители и учителя нашей школы знают о природном электричестве.

2 этап - теоретический

Что такое электричество?

Без электричества представить нашу современную жизнь практически невозможно. Электричество глубоко проникло в нашу повседневную жизнь, мы даже подумать не можем, как без электричества прожить.

Электрический ток - направленное движение заряженных частиц, похожее чем - то на реку. В реке течёт вода, по проводам маленькие частицы атома - электроны. Электрический ток движется по проводнику в замкнутой цепи от источника тока к потребителю. Проводник - вещество, способное легко проводить электрический ток. Если мы имеем дело с металлом, то заряженные частицы - это электроны. Практически все металлы проводники электрического тока. Те вещества, которые не проводят ток, называются - изоляторами. К изоляторам относится пластик, резина. Медь очень хорошо проводит ток. В проводах электроны двигаются под действием магнитного поля.

Вывод: электричество - эффект, вызванный движением и взаимодействием заряженных частиц.

История открытия электричества.

Первые электрические явления люди наблюдали ещё в пятом веке до н.э. Родоначальник греческой науки Фалес Милетский заметил что потёртый мехом или шерсть кусок янтаря притягивает к себе лёгкие тела например пылинки.

В 1662 г.английский физик Уильям Гильберт продолжил изучение этих явлений. Именно он назвал их «электрическими».

В 1729 году Стефан Грей обнаружил, что некоторые металлы могут проводить ток.

Я решил узнать знают ли взрослые и мои сверстники о природном электричестве.

В 1733 году Дю Фэй открыл положительные и отрицательные электрические заряды.

В 1800 году Вольта изобрёл - первый источник постоянного тока.

В области электричества занимался и наш соотечественник Василий Перов. Он в начале XIX века открыл вольтову дугу.

Электричество в природе.

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б. Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека огромно.

Например: природное явление.

Вспышка молнии - огромная искра мгновенный разряд электричества, скопившегося в грозовых тучах. Капли воды в грозовой туче сталкиваются и электролизуются в положительные заряды скапливаются в верхней части тучи, отрицательные - в нижней. Между тучей и землёй, заряжённой положительно, создаётся электрическое поле. Его напряжение возрастает и разряжается молнией.

Например: рыбы.

Электрические скаты используют электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Рыба имеет специальный электрический орган. Он накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшись к такой рыбе. Сила тока электрического органа рыб меняется с возрастом: чем старше рыба, тем сила тока больше.

Например: насекомые.

Пчёлы - во время полёта накапливают положительный заряд электричества, а у цветов он отрицательный. Поэтому пыльца с цветов сама перелетает на тело пчёл.

Мне стало интересно, может ли возникнуть природное электричество в растениях. Я стал собирать информацию на эту тему: беседовал с родителями, посещал школьную библиотеку, читал научные статьи по данной теме.

Вот что я узнал:

Чем больше сока в овоще или фрукте, тем больше электричества из них можно получить.

Для получения электричества, лучше всего использовать медь и цинк.

Для того чтобы начать свои опыты я должен вспомнить правила безопасности с электроприборами. В этом мне помог учитель МОУ «СОШ «Патриот» с кадетскими классами»: Сёмина Людмила Александровна (см. приложение стр. _____).

3 этап - практический

Для начала следует раздобыть цинк и медь. Цинк можно получить, разобрав старую неработающую батарейку или взять оцинкованный гвоздь или болт. Медь же можно найти в медной проволоке, зачистив ее от изоляционного материала.

Далее с помощью наждачной бумаги надо немного почистить медную проволоку или цинк с батарейки. Такая процедура поможет снять мельчайший слой окисленного материала, что благоприятно скажется на химической реакции.

После этого в одну из сторон лимона необходимо вставить медь, а в другую цинк так, чтобы два электрода в лимоне не касались друг друга. Медный и цинковый Электрод со свободной стороны следует подсоединить к проводам и для обеспечения более высокого напряжения и силы тока, такую же операцию проделать с другим лимоном.

Затем провод, идущий от меди в первом лимоне подсоединить к проводу, идущему от цинка второго лимона, образуя, таким образом, электрическую цепь. Другие концы проводов, выходящие из лимонов, можно подключить к приборам или к светодиоду, причем провод, идущий от меди будет нести положительный заряд тока, а провод от цинка - отрицательный заряд постоянного тока.

Эксперимент №1.

2 лимона, провода, медные электроды 2 шт., цинковые электроды 2 шт., светодиод.

Описание эксперимента.

Сначала я разложил всё, что нам понадобится:

цинковые и медные электроды, провода, лимоны, картошка, инструменты, лампочка.

После этого, я воткнул медные и цинковые электроды в лимоны, и лампочка загорелась. Из проделанного опыта мы видим, что лимон работает, как батарейка: медный электрод - положительный (+), а цинковый электрод - отрицательный (-). К сожалению это очень слабый источник энергии. (см. приложение стр. ______).

Гипотеза: если увеличить количество лимонов, увеличиться источник энергии.

Вывод :

в лимонной кислоте содержатся частицы электричества, чтобы получить природное электричество требуется лишь лимонная кислота и медные цинковые электроды.

Лимоны вырабатывают такое напряжение или электрическую силу, как пара батареек в фонарике.

Эксперимент №2

Для проведения опыта понадобится: 2 картофеля, провода, медные электроды 2 шт., цинковые электроды 2 шт., светодиод.

Я соединил цинковые и медные электроды проводами. Вставил медные и цинковые электроды в картофель, и лампочка загорелась.

Вывод: в картофеле содержится кислота, благодаря которой появляется природное электричество. Соединив цинковые электроды, с кислотой выделяемой картофелем лампочка загорается.

Заключение

Природное электричество существует, и оно может быть очень полезным. Я подтвердил свою гипотезу: если открыть тайны электричества то электрический ток станет хорошим другом и помощником, а не опасностью в жизни. При помощи фруктовой или овощной батарейки доказал, что природное электричество существует.

Вывод.

Практическая значимость природного электричества.

На основании полученной мною информации и проделанных опытов, я могу сказать, что природное электричество очень полезная вещь. Если взять в поход медные и цинковые пластинки, провода и лампочку, то можно сделать светильник и зарядное устройство для телефона, так как овощи и фрукты в природе можно всегда найти.

Список используемых источников.

Т.Ю. Покидаева. Новая детская энциклопедия. ООО «Издательская Группа «Азбука».

Е.П. Левитан, Т.А. Никифорова Занимательная физика. Детская энциклопедия

К.Роджерс, Ф. Кларк. Изучаем физику. Свет. Звук. Электричество. ООО Издательство «Росмэн - Пресс» г. Москва, 2002г.

http:// dostizhenya.ru /elektrichestvo

http:// pozmir.ru

http:// sitefaktov.ru

Приложение №1

Правила безопасности для детей, связанные с использованием электричества.

Самое главное, что надо знать про электричество - это техника электро-безопасности, которую должен знать не только взрослый, но и ребенок, что бы обезопасить свою жизнь. Ток - невидим, а потому особенно коварен.

Что не нужно делать взрослым и детям?

Не дотрагивайтесь руками, не подходите близко к проводам и электро-

комплексам.

Недалеко от линий электропередач, подстанций не останавливайтесь на отдых, не разводите костров, не запускайте летающие игрушки.

Лежащий на земле провод может таить в себе смертельную опасность.

Электрические розетки, если в доме маленький ребёнок, - объект особого контроля.

Не играть с розетками и выключателями.

Нельзя засовывать металлическую проволоку в розетки.

Правила использования электроприборов:

Не оставлять включенные электроприборы без присмотра.

Очень опасно собирать, разбирать, что - либо в электрических приборах во время работы прибора.

Уходя из дома выключать все электроприборы. Пользоваться электроприборами можно только с разрешения взрослых.

Вода является хорошим проводником, также как и тело человека, поэтому нельзя мокрыми руками трогать розетки и электроприборы, потому что может «ударить» током.

Электричество в батарейках не опасно. Но нельзя разбирать батарейки и нельзя их глотать, так как внутри них находятся химические вещества, которые вредны для здоровья. Нельзя бросать батарейки в огонь, потому что они могут взорваться.

Приложение №2

Приложение № 3

Анна Юняткина

Так была выбрана тема для моего первого настоящего исследования !

У меня часто возникали вопросы : Как электричество заставляет гореть лапочки? Откуда берется электрический ток в розетке ? Как мои игрушки работают от батарейки , откуда в батарейке электричество ? И в чем разница между электрическим током и электричеством ?

И вот в конце первого учебного полугодия в рабочей тетради по «Окружающему миру» задание : «Соберите электрическую цепь и зарисуйте ее » . Папа с удовольствием согласился купить необходимый для этого «Электрический конструктор » . Когда цепь была собрана, он рассказал мне, как по ней движется электрический ток . И мне стало интересно, почему батарейку я свободно беру в руки, и ток не приносит мне вреда, а вот в розетку пальцы засовывать нельзя, током убьет?

После этого я для себя точно решила, что обязательно должна разобраться с возникающими у меня вопросами, про электричество и ток ! Что и послужило основанием для выбора темы исследования .

Гипотеза : Ток в электрической цепи бывает разным .

Для того чтобы проверить свою гипотезу мной была определена цель исследований и проведен ряд опытов.

Цель : Изучить электрические цепи с разными видами тока.

Для достижения поставленной цели мной по порядку были изучены все интересовавшие меня выше вопросы. Задачи :

1. Изучить природу .

2. Ознакомиться с принципом работы батарейки .

3. Узнать, как .

Для их решения я выполнила следующую работу :

1) спросила у папы и провела с ним опыты;

2) прочитала детские энциклопедии ;

4) искала информацию в Интернете;

5) просматривала познавательные мультфильмы про электричество .

Методы и приемы исследования : наблюдение, эксперимент.

Оборудование : Электрический конструктор , мультиметр.

Практическая значимость : результаты исследования позволят больше узнать об окружающем мире , помогут в повседневной жизни.

Результат работы представлен в виде презентации.

1. Природа электричества и электрического тока

Из мультфильма «Смешарики : Пин-Код : Электробитва » мне было уже известно, что еще в древней Греции греками было замечено : если янтарь потереть о шерсть, он начнёт притягивать к себе лёгкие предметы, находящиеся поблизости. Силу, притягивающую к себе предметы греки стали называть электричеством . Янтарь по-древнегречески называется электроном . От «электрона » - янтаря образовали слово электричество . Это первое знакомство людей с электричеством .

Сейчас ученые доказали : «Все, что нас окружает, состоит из элементарных частиц : протонов и электронов , у которых есть удивительное свойство, они имеют электрический заряд ».

Рис. 1. Протон и электрон

Протон – это положительно, а электрон отрицательно заряженная частица (рис. 1,2) .

Рис. 2. Протон и электрон

Электроны и протоны притягиваются друг к другу и образуют конструкцию под названием атом. Протоны находятся в ядре атома, вокруг протонов вращаются электроны (рис. 3) .

Рис. 3. Атом

При трении янтаря о шерсть частицы с атомов шерсти перескакивают на атомы янтаря (рис. 4) .

Рис. 4. Что происходит при трении

В результате чего шерсть потеряв часть своих электронов становиться заряжена положительно, а янтарь отрицательно. Отрицательно и положительно заряженные атомы начинают притягиваться друг к другу (рис. 5) . Такой вид электричества называется статическим.

Рис. 5. Статическое электричество

Если у одних атомов электронов переизбыток , то под действием электрических сил они устремляются туда, где электронов не хватает . Такой поток электронов и называется электрический ток (рис. 6) .

Рис. 6. Электрический ток

Я попробовала повторить рассказанный в мультфильме пример (рис. 7) .

Рис. 7. Опыт с янтарем

Потом я провела такой же опыт с линейкой : потерла линейку о шерсть, и кусочки бумаги притянулась к ней (рис. 8) .


Рис. 8. Опыт с линейкой

В моем опыте электроны с линейки «перескочили» на шерсть, и линейка притянула к себе бумагу, пытаясь «захватить» с нее электроны .

Я сделала вывод, что янтарь и линейка наэлектризовались , в результате чего возникло статическое электричество .

Выводы :

1) Одинаковые заряды отталкиваются, разные – притягиваются. Одинаково заряженные тела отталкиваются, противоположно заряженные – притягиваются.

2) Электричество получаемое в результате потери баланса положительно и отрицательно заряженных частиц называется статическим.

3) Когда много-много электронов «бегут» по проводнику в одном направлении, возникает электрический ток .

4) Электрический ток – это упорядоченное движение заряженных частиц.

2. Ознакомиться с принципом работы батарейки

Электричество может возникнуть не только при трении. Причиной возникновения тока может быть химическая реакция. Так устроены привычные нам батарейки.

Первая электрическая батарейка появилась в 1799 году. Её изобрел Алессандро Вольта (рис. 9) . Он же изобретатель источника постоянного электрического тока .

Рис. 9. Алессандро Вольта (1745 – 1827)

Батарейки бывают круглые, квадратные (рис. 10) .

Рис. 10. Разновидности батареек

Я рассмотрела строение и расскажу вам про пальчиковую батарейку. Её назвали так, потому что она похожа на пальчик. Снаружи я увидела, что с одного конца батарейки стоит знак «плюс» , а с другого «минус» (рис. 11) .

Рис. 11. Пальчиковая батарейка

Внутри современной батарейки два цилиндрика (анод +; катод -, вставленные один в другой. Между цилиндриками (плюсом и минусом) - специальный барьер (сепаратор, раствор или паста (рис. 12) .

Рис. 12. Строение обычной батарейки

От одного цилиндрика к другому и течет электрический ток (рис. 13) .

Рис. 13. Принцип работы батарейки

Например, от одного цилиндрика по проводу ток идет в лампочку и дальше по проводу подходит к другому цилиндрику (рис. 14) .

Рис. 14. Электро-схема

Для наглядности я с папой собрала, показанную выше, электрическую цепь . На рисунке 15 представлен результат проведенного опыта.

Рис. 15. Электрическая цепь в действии

Мы с папой попытались в домашних условиях сделать свою батарейку (рис. 16) .

Рис. 16. Батарейка своими руками

Для этого нам понадобились (рис. 17) :

Прочное бумажное полотенце;

Пищевая фольга;

Ножницы;

Медные монеты;

Маленькая лампочка;

Два изолированных медных провода.


Рис. 17. Что нужно

Как проводился опыт :

1. Растворили в воде немного соли.

2. Нарезали бумажное полотенце и фольгу на квадратики чуть крупнее монет.

3. Намочили бумажные квадратики в соленой воде.

4. Положили друг на друга стопкой : медную монету, кусочек фольги, снова монету, и так далее несколько раз. Сверху стопки должна быть бумага, внизу – монета.

5. Зачищенный конец одного провода подсунули под стопку, второй конец присоединил к лампочке. Один конец второго провода положили на стопку сверху, второй тоже присоединили к лампочке.

Лампочка не загорелась, зато загорелся диод (рис. 18) .



Рис. 18. Опыт с монетами

Диод горел еле-еле, и мы решили провести еще один опыт при помощи уксуса.

Для него нам потребовались (рис. 19) :

Уксусная кислота

Саморезы;

Медная проволка;

Маленькая лампочка;

Коробочки от «киндеров» ;

Изолированные провода.

Рис. 19. Что нужно

Как проводился опыт :

1. Соединили саморезы с медной проволокой (рис. 20) .


Рис. 20. Этап 1

2. Залили в «киндеры» уксус (рис. 21) .


Рис. 21. Этап 2

3. Вставили по очереди в коробочки от «киндеров» саморезы и медную проволку, так что бы в одном «киндере» была проволка, а в другом саморез (рис. 22) .


Рис. 22. Этап 3

4. Подсоединили один провод к саморезу, а второй к медной проволке (рис. 23) .


Рис. 23. Этап 4

5. Подсоединили провода к лампочке (рис. 24) .


Рис. 24. Этап 5

Лампочка не загорелась, а диод горел хорошо (рис. 25) .

Рис. 25. Этап 6

Так же ток возникает во фруктах и овощах. Я провела опыты с лимоном и картошкой.

В лимон и картошку воткнула медную и цинковую пластины и измерила напряжение вольтметром (рис. 26 и 27) .



Рис. 26. Опыт с лимоном




Рис. 27. Опыт с картошкой

Вольтметр показал, что и в лимоне и в картошке возник электрический ток с примерно одинаковым напряжением.

Трех лимонов мне оказалось достаточно, чтобы светодиод потихоньку загорелся без дополнительных источников тока. Добавив еще один лимон диод начал гореть в полную силу, но лампочка как и в предыдущих опытах не загорелась (рис. 28) .



Рис. 28. Опыт с лимоном

В опыте с картошкой, мы взяли 12 картофелин, но лампочка все равно не загорелась (рис. 29) .


Рис. 29. Опыт с картошкой

По проделанным опытам с лимоном и картошкой я сделала вывод, что электрический ток в овощах и фруктах появляется в результате химической реакции между металлом и содержащейся в овощах и фруктах кислотой.

Еще я узнала, как работает световой источник тока – солнечные батареи.

Солнечная батарея состоит из множества солнечных элементов, в каждом из которых энергия света непосредственно превращается в электрическую энергию . Это совсем несложно, только для изготовления солнечного элемента нужно найти вещество с подходящими свойствами.

Свет «выбивает» электроны из вещества , покрывающего пластины батареи и возникает электрический ток (рис. 30) .

Рис. 30. Солнечная батарея

Солнечная батарея есть у нас на даче, днем она накапливает электричество , а ночью начинает его отдавать (рис. 31) .

Рис. 31. Пример солнечной батареи

Пока на батарею попадают лучи солнца, бабочка не горит, а как только мы ее закрыли телефоном, она зажглась.

Еще солнечные батареи можно встретить дома в калькуляторах (рис. 32) .

Рис. 32. Калькуляторы с солнечной батареей

Вывод : Солнечные батареи не только производят электричество , но и накапливают его при помощи аккумулятора.

Таким образом, я пришла к выводу, что батарейки – это устройства, производящие электрическую энергию . Но одной батарейки недостаточно для того, чтобы лампочка или диод горели.

Для этого необходимо составить замкнутую электрическую цепь из электрических приборов . Папа научил меня собирать простейшую электрическую цепь .

Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из :

1) источника тока;

2) потребителя электроэнергии (лампа, электробытовые приборы ) ;

3) замыкающего и размыкающего устройства (выключатель, кнопка) ;

4) соединительных проводов;

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами .

На электрических схемах все элементы электрической цепи имеют условное обозначение.

Вывод : если батарейка является частью электрической цепи , то поток электронов течет от отрицательного полюса батарейки к положительному через все элементы цепи .

Вот как работают мои игрушки !

3. Как электричество попадает в наш дом

Современному человеку электричество необходимо , чтобы работали станки на заводах , чтобы ездили поезда, трамваи. А дома - чтобы работали различные приборы , которые помогают быстро выполнить домашнюю работу . Но откуда и как к нам в дом приходит электричество ?

И вот что я узнала (рис. 33) :

1. Электричество для нашего дома производится на электростанции (ТЭЦ-17) .

3. Потом электричество попадает в трансформатор, что бы стать пригодным

для домашних электроприборов . попадает в наши дома

4. С трансформатора электричество по проводам приходит к нам в дом.

Рис. 33. Как электричество

Я попросила родителей показать мне, откуда и как (рис. 34) .





Рис. 34. Как электричество приходит в наш дом

Для получения такого большого количества электроэнергии строят электростанции .

Ток на электростанции получают с помощью особого устройства – генератора (рис. 35) .

Рис. 35. Генератор

Чтобы привести в действие генератор тока, используют разные виды энергии.

Тепловые получают энергию от сгорания топлива (газа, дизельного топлива или угля) . Такая станция есть у нас в городе Ступино (например, ТЭЦ-17) (рис. 36) .


Рис. 36. ТЭЦ-17 г. Ступино

На гидроэлектростанции для вращения турбины генератора используют энергию воды. Такую можно увидеть в городе Шатура (рис. 37) .

Рис. 37. Шатурская гидроэлектростанция

На атомной электростанции используют энергию тепла, выделяемой при ядерной реакции (рис. 38) .

Рис. 38. Ростовская атомная электростанция

А ещё есть ветровые электростанции (рис. 39, солнечные (рис. 40) и многие другие.

Рис. 39. Ветровая электростанция

Рис. 40. Солнечная электростанция

Когда вы нажимаете на выключатель лампы или какого-нибудь прибора, то электрический ток , пришедший от генератора, начинает течь по проводам, и прибор начинает действовать, а лампочка - светиться. Точно так же, как в моей электро-схеме (рис. 41) .

Рис. 41. Электрическая цепь работы лампочки

Производство электроэнергии требует больших затрат, поэтому очень важно беречь ее, не тратить зря.

Подведем итоги!

Почему же электричество опасно ? И почему батарейка для меня безвредна, а ток в розетке так опасен. Вот что я узнала :

Ток - это движение заряженных частиц в одном направлении. Частицы «бегут» не ровно, а колеблются (рис. 42) .

Рис. 42. Электрический ток

«Колеблются» слабо – напряжение маленькое (например, в батарейке) . «Удар» слабый (рис. 43) .

Рис. 43. Электрический ток в батарейке

Сильные колебания – напряжение большое. «Удар» сильный. При прикосновении к проводнику палец чувствует удар и боль (рис. 44) .

Рис. 44. Электрический ток в розетке

В розетке – 220 вольт, удар током приводит к травмам, ожогам и смерти.

Вот почему ток в розетке так опасен!

В результате всех проделанных исследований я сделала выводы :

1. Электричество - это общее название ВСЕХ явлений, так или иначе связанных со свойствами электрических зарядов .

2. Ток - это направленное движение электрических зарядов под действием сил электрической природы . То есть просто частный случай электричества .

3. Электричество в наш дом попадает по электрической цепи с электростанций .

4. Чем выше колебание частиц при движении, тем выше напряжение тока в цепи и опаснее его удар .

Будем бережно относиться к электричеству , будем помнить о той опасности, которую оно несёт в себе.

Источники :

1. Леенсон И. А. Загадочные заряды и магниты. Занимательное электричество . Изд-во : ОлмаМедиаГрупп, 2014 г;

2. http://www.kindergenii.ru ;

3. http://detskiychas.ru ;

4. http://www.kostyor.ru ;

5. http://pochemuha.ru ;

Тема моей работы: Живое электричество

Целью работы было: выявление способов получения электроэнергии из растений и экспериментальное подтверждение некоторых из них.

Мы поставили перед собой следующие задачи:

Для достижения поставленных задач использовали следующие методы исследования: анализ литературы, экспериментальный метод, метод сравнения.

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.


«РАБОТА ЖИВОЕ ЭЛЕКТРИЧЕСТВО»

Министерство образования, науки и молодежи Республики Крым

Крымский кон­курс исследовательских работ и проектов школьников 5-8 классов «Шаг в науку»

Тема: Живое электричество

Работу выполнила:

Асанова Эвелина Асановна

ученица 5 класса

Научный руководитель:

Аблялимова Лиля Ленуровна,

учитель биологии и химии

МБОУ «Веселовская средняя школа»

с. Веселовка – 2017

1.Введение……………………………………………………………..…3

2.Источники электрического тока…………………………..…….……4

2.1. Нетрадиционные источники энергии………………………….…..4

2.2. «Живые» источники электрического тока………………………...4

2.3. Фрукты и овощи как источники электрического тока…………...5

3. Практическая часть……………………………..………….…………6

4. Заключение……………………………………………….………..…..8

Список источников литературы………………………………………….9

    ВВЕДЕНИЕ

Электричество и растения – что может быть общего у них? Однако еще в середине XVIII века естествоиспытатели поняли: эти два понятия объединяет какая-то внутренняя связь.

Люди столкнулись с «живым» электричеством еще на заре цивилизации: им была известна способность некоторых рыб с помощью какой-то внутренней силы поражать добычу. Об этом свидетельствуют наскальные рисунки и начертания некоторых египетских иероглифов, изображающих электрического сома. И не его одного выделяли тогда по этому признаку. Римские врачи умудрялись использовать «удары» скатов для лечения нервных болезней. Очень много сделано учёными в изучении удивительного взаимодействия электричества и живого, но многое пока ещё скрывает от нас природа.

Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н.э. Он обнаружил, что янтарь, потертый о шерсть, приобретет свойства притягивать легкие предметы: пушинки, кусочки бумаги. Позже считалось, что таким свойством обладает только янтарь. Первый химический источник электрического тока был изобретен случайно, в конце XVII века итальянским ученым Луиджи Гальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки. Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное. Будучи врачом, а не физиком, он видел причину в так называемом «животном электричестве». Свою теорию Гальвани подтверждал ссылкой на известные случаи разрядов, которые способны производить некоторые живые существа, например «электрические рыбы».

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Опыты, проведенные Дюфе, говорили, что один из зарядов образуется при трении стекла о шелк, а другой – при трении смолы о шерсть. Понятие о положительном и отрицательном заряде ввел немецкий естествоиспытатель Георг Кристоф. Первым количественным исследователем был закон взаимодействия зарядов, экспериментально установленный в 1785 году Шарлем Кулоном с помощью разработанных им чувствительных крутильных весов.

    ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), гидроаккумулирующие электростанции, атомные электростанции (АЭС).

      НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Кроме традиционных источников тока существует множество нетрадиционных источников. Электричество, по сути, можно практически получать из всего, что угодно. Нетрадиционные источники электрической энергии, где невосполнимые энергоресурсы практически не тратятся: ветроэнергетика, приливная энергетика, солнечная энергетика.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

      «ЖИВЫЕ» ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

В природе есть животные, которых мы называем «живыми электростанциями». Животные очень чувствительны к электрическому току. Даже незначительной силы ток для многих из них смертелен. Лошади погибают даже от сравнительно слабого напряжения в 50-60 вольт. А есть животные, которые не только обладают высокой устойчивостью к электрическому току, но и сами вырабатывают ток в своём теле. Это рыбы - электрические угри, скаты, и сомы. Настоящие живые электростанции!

Источником тока служат особые электрические органы, расположенные двумя парами под кожей вдоль тела - под хвостовым плавником и на верхней части хвоста и спины. По внешнему виду такие органы представляют продолговатое тельце, состоящее из красновато-желтого студенистого вещества, разделённого на несколько тысяч плоских пластинок, ячеек-клеток, продольными и поперечными перегородками. Что-то вроде батареи. От спинного мозга к электрическому органу подходит более 200 нервных волокон, ответвления от которых идут к коже спины и хвоста. Прикосновение к спине или хвосту этой рыбы вызывает сильный разряд, который может мгновенно убить мелких животных и оглушить крупных животных и человека. Тем более, что в воде ток передаётся лучше. Оглушённые угрями крупные животные нередко тонут в воде.

Электрические органы – средство не только для защиты от врагов, но и для добычи пищи. Охотятся электрические угри ночью. Приблизившись к добыче, произвольно делает разряд своих «батарей», и всё живое – рыбы, лягушки, крабы - парализуются. Действие разряда передаётся на расстояние в 3-6 метров. Ему остаётся только заглотать оглушённую добычу. Израсходовав запас электрической энергии, рыба долгое время отдыхает и пополняет её, «заряжает» свои «батареи».

2.3. ФРУКТЫ И ОВОЩИ КАК ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

Изучив литературу, я узнала, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля – сырого и вареного. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.

Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек.

    ПРАКТИЧЕСКАЯ ЧАСТЬ

Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани. Если взять лимон или яблоко и разрезать, а потом приложить к кожуре два электрода, то они не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой к внутренней части мякоти, то появится разность потенциалов, и гальванометр отметит появление силы тока.

Я решила проверить на опыте и доказать, что в овощах и фруктах есть электричество. Для исследований мною были выбраны следующие фрукты и овощи: лимон, яблоко, банан, мандарин, картофель. Отмечала показания гальванометра и, действительно, в каждом случае получала ток.



В результате проделанной работы:

1. Я изучила и проанализировала научную и учебную литературу об источниках электрического тока.

2.Познакомилась с ходом работы по получению электрического тока из растений.

3. Доказала, что в плодах различных фруктов и овощей есть электричество и получила необычные источники тока.

Конечно, электрическая энергия растений и животных, в настоящее время не могут заменить полноценные мощные источники энергии. Однако и недооценивать их не стоит.

    ЗАКЛЮЧЕНИЕ

Для достижения цели моей работы решены все поставленные задачи исследования.

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнала много интересного о традиционных источниках тока - различного рода электростанциях.

С помощью опыта показала, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить мобильный телефон и др.). Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.

СПИСОК ИСТОЧНИКОВ ЛИТЕРАТУРЫ

    Гордеев А.М., Шешнев В.Б. Электричество в жизни растений. Издательство: Наука - 1991г.

    Журнал «Наука и жизнь», №10, 2004г.

    Журнал. «Галилео» Наука опытным путем. № 3/ 2011 г. «Лимонная батарейка».

    Журнал «Юный эрудит» № 10 / 2009 г. «Энергия из ничего».

    Гальванический элемент - статья из Большой советской энциклопедии.

    В. Лаврус «Батарейки и аккумуляторы».

Просмотр содержимого документа
«ТЕЗИСЫ»

Тема: Живое электричество

Научный руководитель: Аблялимова Лиля Ленуровна, учитель биологии и химии МБОУ «Веселовская средняя школа»

Актуальность выбранной темы: в настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет важное значение. Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.

Цель работы: выявление способов получения электроэнергии из растений и экспериментальное подтверждение некоторых из них.

    Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

    Ознакомиться с ходом работы по получению электрического тока из растений.

    Доказать, что в растениях есть электричество.

    Сформулировать направления полезного использования получившихся результатов.

Методы исследования: анализ литературы, экспериментальный метод, метод сравнения.

Просмотр содержимого презентации
«ПРЕЗЕНТАЦИЯ»


Живое электричество Работу выполнила: Асанова Эвелина, ученица 5 класса МБОУ «Веселовская средняя школа»


Актуальность работы:

В настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет важное значение.

Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.


Цель работы:

Выявление способов получения электроэнергии из растений и экспериментальное подтверждение некоторых из них.


  • Изучить и проанализировать научную и учебную литературу об источниках электрического тока.
  • Ознакомиться с ходом работы по получению электрического тока из растений.
  • Доказать, что в растениях есть электричество.
  • Сформулировать направления полезного использования получившихся результатов.

  • Анализ литературы
  • Экспериментальный метод
  • Метод сравнения

Введение

Наша работа посвящена необычным источникам энергии.

В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.

Современная жизнь просто немыслима без электричества - только представьте существование человечества без современной бытовой техники, аудио- и видеоаппаратуры, вечера со свечой и лучиной.


Живые электростанции

Самые сильные разряды производит южно американский электрический угорь. Они достигают 500-600 вольт. Такое напряжение способно свалить с ног лошадь. Угорь создает особенно сильное напряжение тока, когда изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо .


Живые электростанции

Скаты являются живыми электростанциями, вырабатывающими напряжение около 50-60 вольт и дающими разрядный ток 10 ампер.

Все рыбы, дающие электрические разряды, используют для этого специальные электрические органы.


Кое – что об электрических рыбах

Рыбы используют разряды:

  • чтобы освещать свой путь;
  • для защиты, нападения и оглушения жертвы;
  • передают сигналы друг другу и обнаруживают заранее препятствия.

Нетрадиционные источники тока

Кроме традиционных источников тока существует множество нетрадиционных. Оказывается, электричество можно практически получать из всего, что угодно.


Эксперимент:

Электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и самое интересное, из обычного картофеля. Я провела опыты с этими плодами и действительно получила ток.





  • В результате проделанной работы:
  • 1. Я изучила и проанализировала научную и учебную литературу об источниках электрического тока.
  • 2.Познакомилась с ходом работы по получению электрического тока из растений.
  • 3. Доказала, что в плодах различных фруктов и овощей есть электричество и получила необычные источники тока.

ЗАКЛЮЧЕНИЕ:

Для достижения цели моей работы решены все поставленные задачи исследования. Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнала много интересного о традиционных источниках тока - различного рода электростанциях.

С помощью опытов показала, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить мобильный телефон и др.). Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.


На протяжении многих веков люди не подозревали о существовании электричества. А молния воспринималась как проявление необъяснимых божественных сил. Как же удавалось людям, живущим в окружении электрических и магнитных полей, совершенно их не замечать?
Замечали, конечно, замечали, но не находили объяснения. Меня эта тема впервые заинтересовала на уроке окружающего мира, когда учитель рассказывал, как электричество приходит к нам в дом? А дома? Встречаемся мы с электричеством? Нет, не тем, что приходит по проводам с электростанций? Мне стало интересно, а как объяснить явления, которые наблюдают многие люди, причесываясь перед зеркалом, когда волосы притягиваются к расчёске. А когда снимаешь свитер в темноте, можно наблюдать, как между человеком и свитером проскакивают искры, и слышится тихий треск. А сверкающая молния?
Оказалось причина этих явлений - электричество. А можно ли самой, опытным путем, «добывать» электричество? Что это такое?

Цель проекта: выяснить, что такое электричество, электрический ток, электрическое напряжение, когда оно возникает.

Объектом исследования является процесс появления электричества.

Предметом исследования является технология получения электричества в домашних условиях на основе опытов, наблюдений, сравнений и обобщений.

Мы выдвигаем следующую гипотезу : что электричество является составной частью природы, окружающего мира.

Задачи исследования.
1. Изучить и проанализировать литературу по данному вопросу;
2. Провести опыты, доказывающие существование электричества.
3. Сформулировать ответы на поставленные в начале вопросы.

Методы исследования:
Теоретический (анализ литературы)
эксперимент

Этапы исследования:
Провести эксперименты с телами из разных веществ (стекло, пластмасса, дерево) и легкими предметами (бумажные кусочки произвольной формы).
Провести опыты со «спрутом» и «трусишкой», объясняющие существование двух видов электрических зарядов.
Механизм работы разных видов электрического тока проверить на опытах с полиэтиленом и тетрадным листом.
Провести опыт с электрической цепью, объясняющий, как и где живёт электричество, почему горит электрическая лампочка
Экспериментально доказать, что электричество существует в природе.

Практическая значимость работы определяется возможностью использования материалов при проведение опытов на уроках окружающего мира, во внеурочной деятельности учащихся.

История изучения электричества
Электричество было известно людям с самых давних времен.
Знания о таком явлении как электричество были у людей уже много тысяч лет назад. Ведь ещё древний человек заметил удивительное свойство натертой янтарём шерсти притягивать нитки, пыль и другие мелкие предметы.
Мы узнали, что древние греки очень любили украшения и мелкие поделки из янтаря. Этот камень они называли за его цвет и блеск «ЭЛЕКТРОН», что значит «солнечный камень». О том, что янтарь мог электризоваться знали давно. Впервые исследованием этого явления занялся знаменитый философ древности ФАЛЕС МИЛЕТСКИЙ. Об этом есть даже легенда.
«Дочь Фалеса пряла шерсть янтарным веретеном. Как-то, уронив его в воду, девушка стала обтирать его краем своего шерстяного хитона и заметила, что к веретену пристало несколько шерстинок. Думая, что они прилипли, она принялась вытирать его ещё сильнее. И что же? Шерстинок налипало тем больше, чем сильнее натиралось веретено. Девушка обратилась за разъяснением к отцу. Фалес понял, что причина в веществе, из которого сделано веретено. В следующий раз он накупил различных янтарных изделий и убедился, что все они, будучи натёрты шерстяной материей, притягивают лёгкие предметы, как магнит притягивает железо».
Гораздо позже данное свойство было замечено и за другими веществами, такими как сера, сургуч и стекло. И по причине того, что «янтарь» по-гречески звучал как «электрон», эти свойства начали называться электрическими.
Первые шаги к пониманию природы электричества были сделаны в середине XVIII века, когда французский физик Кулон открыл закон о взаимодействии электрических зарядов.
Упорядоченное движение свободных электрически заряженных частиц называется электрическим током.
В конце XVIII века итальянский физик Алессандро Вольта создал первый источник тока и дал физикам возможность проводить опыты с электрическим током.
Правда, практически измерять электричество человек научился только в начале 19 века. Потом понадобилось еще 70 лет до того момента, когда в 1872 году русский ученый А.Н. Лодыгин изобрел первую в мире электрическую лампочку накаливания.

Что такое электричество
Электричество - это одна из форм энергии. Оно вырабатывается, например, в батарейках, но главный его источник - электростанции, откуда оно поступает в наши дома по толстым проводам, или кабелям. Попробуй представить себе, как течет вода в реке. Точно так же движется по проводам электричество. Вот почему электричество называется электрическим током. Электричество, которое никуда не движется, называется статическим.
Вспышка молнии - это мгновенный разряд статического электричества, скопившегося в грозовых тучах. В таких случаях электричество движется по воздуху от тучи к туче или от тучи - вниз, к земле.
Возьми пластмассовую расческу и несколько раз быстро и энергично проведи ею по волосам. Теперь поднеси расческу к кусочкам бумаги, и ты увидишь, что она притянет их, как магнит. Когда ты причесываешься, в расческе накапливается статическое электричество. Предмет, заряженный статическим электричеством, может притягивать другие предметы.
Электрически ток движется по проводам только в том случае, если они соединены в замкнутое кольцо - электрическую цепь. Возьмем, например, фонарик: провода, соединяющие батарейку, лампочку и выключатель, образуют замкнутую цепь. Электрическая цепь на расположенном выше рисунке действует по тому же принципу. Пока по цепи идет ток, лампочка горит. Если цепь разомкнуть - скажем, отсоединить провод от батарейки, - лампочка погаснет.
Материалы, которые пропускают электрический ток, называются проводниками. Из таких материалов - в частности, из меди, которая хорошо проводит электричество, - делают электрические провода. Провод под током представляет опасность для человека (наше тело - тоже проводник!), поэтому провода покрывают пластмассовой оплеткой. Пластмасса - это изолятор, то есть материал, который не пропускает ток.

ВНИМАНИЕ! Электричество опасно для жизни. С электроприборами и розетками следует обращаться очень осторожно.

Как узнать, какие материалы являются проводниками, а какие изоляторами? Проведем один несложный опыт. Все, что тебе для этого понадобится, показано на рисунке выше. Сначала соберём электрическую цепь.
Отсоединим один из проводов. В результате цепь разомкнется и лампочка погаснет. Теперь возьмём скрепку и положим ее так, чтобы восстановить цепь. Загорелась лампочка или нет?
Попробуем положить вместо скрепки что-нибудь другое, например вилку или ластик. Если лампочка загорится, значит, это проводник, если не загорится - изолятор.
Электричество вырабатывается на электростанциях. Оттуда оно поступает в города и села по линиям электропередачи - проводам, которые натянуты на высоких мачтах. Непосредственно в дома электричество поступает по проводам, проложенным под землей.
Выяснилось, что электричество возникает, когда при трении веществ происходит разделение зарядов на два вида — положительные и отрицательные. Одноименные (одинаковые) заряды отталкиваются, разноимённые (противоположные) —притягиваются.
Двигаясь по металлической проволоке — проводнику — заряды создают электрический ток.
Ток бежит по проводам, Свет несет в квартиру нам. Чтоб работали приборы, Холодильник, мониторы. Кофемолки, пылесос, Ток энергию принес.
Вывод: Учёные установили, что электричество - это поток мельчайших заряженных частиц - электронов.
Поток заряженных частиц в одном направлении учёные назвали электрическим током.

Источники тока или откуда берется электричество
Первый химический источник тока был создан итальянским ученым Алессандро Вольта приблизительно в 1800 году. Первая электрическая батарея (рисунок) Батарея Вольта, или Вольтов столб, была составлена из медных и цинковых кружков,
Сейчас мы получаем электричество благодаря большим электростанциям. На электростанциях есть генераторы — большие машины, которые работают от источника энергии. Обычно источник - это тепловая энергия, которую получают при нагревании воды (пар). А для нагревания воды используют уголь, нефть, природный газ или ядерное топливо. Пар, который образуется при нагревании воды, приводит в действие огромные лопасти турбины, а те в свою очередь запускают генератор.
Энергию можно получить, используя силу воды, падающей с большой высоты: с плотин или водопадов (гидроэнергетика).
Как источник питания для генераторов можно использовать силу ветра или тепло Солнца, но к ним прибегают не часто.
Далее работающий генератор при помощи огромного магнита создаёт поток электрических зарядов (ток), который проходит по медным проводам. Чтобы передавать электричество на большие расстояния, необходимо увеличить напряжение. Для этого используют трансформатор — устройство, которое может повышать и понижать напряжение. Теперь электричество с большой мощностью (до 10000 вольт и более) по огромным кабелям, которые находятся глубоко под землёй или высоко в воздухе, движется к месту назначения. Перед тем, как попасть в квартиры и дома, электричество проходит через другой трансформатор, который понижает его напряжение. Теперь готовое к использованию электричество движется по проводам к необходимым объектам. Количество использованного электричества регулируется специальными счётчиками, которые прикрепляются к проводам, которые проложенные через стены и полы. Подводят электричество в каждую комнату дома или квартиры.

Где живет электричество
Электрические явления были непонятны и опасны для жизни, они вселяли страх. Но постепенно опыт накапливался, и люди начали понимать некоторые из них, научились создавать и использовать электричество в своих нуждах.
Мы знаешь, где оно живет: в проводах, подвешенных на высоких мачтах, в комнатной электропроводке и еще в батарейке карманного фонаря. Но все это электричество домашнее, ручное. Человек его изловил и заставил работать. Оно потрескивает в никелированном теле электроутюга. Сияет в лампочке. Гудит в электродвигателях. Весело распевает в радиоприемниках. Да мало ли что еще может делать электричество.
Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.
Возможности электричества поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую …
Ну, а есть ли на свете электричество дикое, неприрученное? Такое, которое живет само по себе? Да, есть. Оно вспыхивает ослепительным зигзагом в грозовых тучах. Оно светится на мачтах кораблей в душные тропические ночи. Но оно есть не только в облаках, и не только под тропиками. Тихое, незаметное, оно живет всюду. Даже у тебя в комнате. Ты часто держишь его в руках и сам об этом не знаешь. Но его можно обнаружить.


Единица измерения силы тока За единицу силы тока принимают силу тока, при которой отрезки параллельных проводников длиной 1 м взаимодействуют с силой Н (0, Н). Эту единицу называют АМПЕР (А). -7


Ампер Андре Мари Родился 22 января 1775 в Полемье близ Лиона в аристократической семье. Получил домашнее образование.. Занимался исследованиям связи между электричеством и магнетизмом (этот круг явлений Ампер называл электродинамикой). Впоследствии разработал теорию магнетизма. Умер Ампер в Марселе 10 июня 1836.






Uk-badge uk-margin-small-right">


Алессандро Волта итальянский физик, химик и физиолог, один из основоположников учения об электричестве. Алессандро Вольта родился в 1745,был четвёртым ребенком в семье. В 1801 году получил от Наполеона титул графа и сенатора. Умер Вольта в Комо 5 марта 1827.




Электрическое сопротивление Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника. R = R = ρ S R-сопротивление ρ-удельное сопротивление - длина проводника S-площадь поперечного сечения




Ом Георг ОМ (Ohm) Георг Симон (16 марта 1787, Эрланген - 6 июля 1854, Мюнхен), немецкий физик, автор одного из основных законов, Ом занялся исследованиями электричества. В 1852 году Ом получил пост ординарного профессора. Ом скончался 6 июля 1854 года.. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили наименование единицы сопротивления- 1 Ом.